Microbial forensics represents a promising tool to strengthen traditional forensic investigative methods and fill related knowledge gaps. Large-scale microbiome studies indicate that microbial fingerprinting can assist forensics in areas such as trace evidence, source tracking, geolocation, and circumstances of death. Nevertheless, the majority of forensic microbiome studies focus on soil and internal organ samples, whereas the microbiome of skin, mouth, and especially vaginal samples that are routinely collected in sexual assault and femicide cases remain underexplored. This review discusses the current and emerging insights into vaginal, skin, and salivary microbiome-modulating factors during life (e.g., lifestyle and health status) and after death (e.g., environmental influences and post-mortem interval) based on next-generation sequencing. We specifically highlight the key aspects of female reproductive tract, skin, and mouth microbiome samples relevant in forensics. To fill the current knowledge gaps, future research should focus on the degree to which the post-mortem succession rate and profiles of vaginal, skin, and saliva microbiota are sensitive to abiotic and biotic factors, presence or absence of oxygen and other gases, and the nutrient richness of the environment. Application of this microbiome-related knowledge could provide valuable complementary data to strengthen forensic cases, for example, to shed light on the circumstances surrounding death with (post-mortem) microbial fingerprinting. Overall, this review synthesizes the present knowledge and aims to provide a framework to adequately comprehend the hurdles and potential application of vaginal, skin, and salivary post-mortem microbiomes in forensic investigations.
Amplification of mtDNA D-loop fragments with a length of 200 bp or more from ancient and even from fairly recent biological samples, can lead to erroneous results. This was clearly illustrated in our investigation of the putative heart of Louis XVII. By selecting different sets of primers which amplified shorter fragments of mtDNA (length 109 bp-201 bp), authentic polymorphisms could be visualised which remained undetected with the more classical primers for fragment sizes > 210 bp. Here we have extended those findings to other biological materials. A competitive PCR assay for quantitation of the amount of mtDNA for different fragment lengths, using a 10 bp deletion construct, was applied to ancient material and on a set of hairs of various ages of sampling (1966 up to the present). The results showed that DNA degradation started a few years after sampling. In the DNA extracts of the older hair shafts (1983-1995), the proportion of the number of short fragments to the number of long fragments is on average 4 in contrast to the most recent hair shafts. The numbers of amplifiable mtDNA copies for the hairs from 1975 and older were too small to show a clear difference. Use of long PCR fragments in such cases can yield misleading results. Use of short PCR fragments for the analysis of mtDNA from shed hair, in combination with a competitive PCR assay to determine the state of degradation, should improve the reliability of forensic mtDNA analysis considerably.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.