Several domestic and wild animal species are susceptible to severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) infection. Reported (sero)prevalence in dogs and cats vary largely depending on the target population, test characteristics, geographical location and time period. This research assessed the prevalence of SARS‐CoV‐2‐positive cats and dogs (PCR‐ and/or antibody positive) in two different populations. Dogs and cats living in a household with at least one confirmed COVID‐19‐positive person (household (HH) study; 156 dogs and 152 cats) and dogs and cats visiting a veterinary clinic (VC) (VC study; 183 dogs and 140 cats) were sampled and tested for presence of virus (PCR) and antibodies. Potential risk factors were evaluated and follow‐up of PCR‐positive animals was performed to determine the duration of virus shedding and to detect potential transmission between pets in the same HH. In the HH study, 18.8% (27 dogs, 31 cats) tested SARS‐CoV‐2 positive (PCR‐ and/or antibody positive), whereas in the VC study, SARS‐CoV‐2 prevalence was much lower (4.6%; six dogs, nine cats). SARS‐CoV‐2 prevalence amongst dogs and cats was significantly higher in the multi‐person HHs with two or more COVID‐19‐positive persons compared with multi‐person HHs with only one COVID‐19‐positive person. In both study populations, no associations could be identified between SARS‐CoV‐2 status of the animal and health status, age or sex. During follow‐up of PCR‐positive animals, no transmission to other pets in the HH was observed despite long‐lasting virus shedding in cats (up to 35 days). SARS‐CoV‐2 infection in dogs and cats appeared to be clearly associated with reported COVID‐19‐positive status of the HH. Our study supports previous findings and suggests a very low risk of pet‐to‐human transmission within HHs, no severe clinical signs in pets and a negligible pet‐to‐pet transmission between HHs.
Background Building the European Antimicrobial Resistance Surveillance network in Veterinary medicine (EARS-Vet) was proposed to strengthen the European One Health antimicrobial resistance (AMR) surveillance approach. Objectives To define the combinations of animal species/production types/age categories/bacterial species/specimens/antimicrobials to be monitored in EARS-Vet. Methods The EARS-Vet scope was defined by consensus between 26 European experts. Decisions were guided by a survey of the combinations that are relevant and feasible to monitor in diseased animals in 13 European countries (bottom-up approach). Experts also considered the One Health approach and the need for EARS-Vet to complement existing European AMR monitoring systems coordinated by the ECDC and the European Food Safety Authority (EFSA). Results EARS-Vet plans to monitor AMR in six animal species [cattle, swine, chickens (broilers and laying hens), turkeys, cats and dogs], for 11 bacterial species (Escherichia coli, Klebsiella pneumoniae, Mannheimia haemolytica, Pasteurella multocida, Actinobacillus pleuropneumoniae, Staphylococcus aureus, Staphylococcus pseudintermedius, Staphylococcus hyicus, Streptococcus uberis, Streptococcus dysgalactiae and Streptococcus suis). Relevant antimicrobials for their treatment were selected (e.g. tetracyclines) and complemented with antimicrobials of more specific public health interest (e.g. carbapenems). Molecular data detecting the presence of ESBLs, AmpC cephalosporinases and methicillin resistance shall be collected too. Conclusions A preliminary EARS-Vet scope was defined, with the potential to fill important AMR monitoring gaps in the animal sector in Europe. It should be reviewed and expanded as the epidemiology of AMR changes, more countries participate and national monitoring capacities improve.
Staphylococcus pseudintermedius can be transmitted between dogs and their owners and can cause opportunistic infections in humans. Whole genome sequencing was applied to identify the relatedness between isolates from human infections and isolates from dogs in the same households. Genome SNP diversity and distribution of plasmids and antimicrobial resistance genes identified related and unrelated isolates in both households. Our study shows that within-host bacterial diversity is present in S. pseudintermedius, demonstrating that multiple isolates from each host should preferably be sequenced to study transmission dynamics.
Acinetobacter baumannii is a nosocomial pathogen that frequently causes healthcare-acquired infections. The global spread of multidrug-resistant (MDR) strains with its ability to survive in the environment for extended periods imposes a pressing public health threat. Two MDR A. baumannii outbreaks occurred in 2012 and 2014 in a companion animal intensive care unit (caICU) in the Netherlands. Whole-genome sequencing (WGS) was performed on dog clinical isolates (n = 6), environmental isolates (n = 5), and human reference strains (n = 3) to investigate if the isolates of the two outbreaks were related. All clinical isolates shared identical resistance phenotypes displaying multidrug resistance. Multi-locus Sequence Typing (MLST) revealed that all clinical isolates belonged to sequence type ST2. The core genome MLST (cgMLST) results confirmed that the isolates of the two outbreaks were not related. Comparative genome analysis showed that the outbreak isolates contained different gene contents, including mobile genetic elements associated with antimicrobial resistance genes (ARGs). The time-measured phylogenetic reconstruction revealed that the outbreak isolates diverged approximately 30 years before 2014. Our study shows the importance of WGS analyses combined with molecular clock investigations to reduce transmission of MDR A. baumannii infections in companion animal clinics.
This study clearly shows that S. schleiferi is a concern in human hospital settings, whereas S. coagulans predominantly causes infections in animals. S. coagulans is more resistant to antibiotics and can sometimes transmit to humans via exposure to infected dogs. Even though genome-based methods can clearly differentiate the two species, current diagnostic methods used routinely in clinical microbiology laboratories cannot distinguish the two bacterial species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.