In male urethan-anesthetized rats, activity was measured in nerves that run over the proximal urethra. The urethral nerve response to stepwise urethral perfusion could be described by a four-parameter model (fit error <6%). At the onset of perfusion, the urethra was closed and the pressure increased with the infused volume. The nerve activity (NA) increased linearly with this inserted volume to a maximum (NAmax), which was proportional to the instantaneous pressure. The duration of this first episode (δ t) was inversely proportional to the perfusion rate. After infusion of a fixed volume, the urethra opened and the NA decreased with a time constant ϕ−1 (∼1.8 s) to an elevated level (NAlevel). NAlevel was linearly related to the steady-state pressure. Accordingly, sensors in the urethra are sensitive to pressure rather than to the perfusion rate. The parameters NAmax, NAlevel, and δ t showed very good reproducibility (SD ∼19% of mean). The measured activity was most likely afferent and conducted to the major pelvic ganglion.
The objective of this work was to study the relation between afferent bladder nerve activity and bladder mechanics and the mechanisms that initiate and terminate bladder contractions. Bladder nerve activity, pressure and volume were recorded during the micturition cycle in the rat. The highest correlation was found between afferent nerve activity and stress (pressure x volume). Afferent nerve activity depended linearly on stress within 6%, and both slope and offset were independent of the bladder-filling rate. The levels of afferent bladder nerve activity at the onset and cessation of efferent firing to the bladder were highly reproducible with coefficients of variation of
In this study, the voiding phase of the micturition cycle in the anesthetized rat and guinea pig is analyzed. In both animals, voiding is characterized by an increase in intravesical pressure and then a decrease, which is accompanied by flow through the urethra and emission of urine. An ultrasonic flow probe was used in both species to measure the flow rate in relation to the intravesical pressure. In the (male) rat, so-called high-frequency oscillations are superimposed on the decreasing bladder pressure. These oscillations do not occur in the guinea pig. It is concluded that the high-frequency oscillations are caused by intermittent flow and not by variations in the bladder contraction. The intermittent flow most likely is caused by the relaxation and contraction of the external urethral sphincter and may have a function in territory marking. In our view, it is not likely that the oscillations enhance bladder emptying, as has been suggested in the literature.
The overactive bladder (OAB) is a syndrome-based urinary dysfunction characterized by “urgency, with or without urge incontinence, usually with frequency and nocturia”. Earlier we developed a mathematical model of bladder nerve activity during voiding in anesthetized rats and found that the nerve activity in the relaxation phase of voiding contractions was all afferent. In the present study, we applied this mathematical model to an acetic acid (AA) rat model of bladder overactivity to study the sensitivity of afferent fibers in intact nerves to bladder pressure and volume changes. The afferent activity in the filling phase and the slope, i.e., the sensitivity of the afferent fibers to pressure changes in the post-void relaxation phase, were found to be significantly higher in AA than in saline measurements, while the offset (nerve activity at pressure ~0) and maximum pressure were comparable. We have thus shown, for the first time, that the sensitivity of afferent fibers in the OAB can be studied without cutting nerves or preparation of single fibers. We conclude that bladder overactivity induced by AA in rats is neurogenic in origin and is caused by increased sensitivity of afferent sensors in the bladder wall.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.