Magnetospheric clouds have been proposed as explanations for depth-varying dips in the phased light curves of young, magnetically active stars such as σ Ori E and RIK-210. However, the stellar theory that first predicted magnetospheric clouds also anticipated an associated mass-balancing mechanism known as centrifugal breakout for which there has been limited empirical evidence. In this paper, we present data from the Transiting Exoplanet Survey Satellite, Las Cumbres Observatory, All-Sky Automated Survey for Supernovae, and Veloce on the 45 Myr M3.5 star TIC 234284556, and propose that it is a candidate for the direct detection of centrifugal breakout. In assessing this hypothesis, we examine the sudden (∼1 day timescale) disappearance of a previously stable (∼1 month timescale) transit-like event. We also interpret the presence of an anomalous brightening event that precedes the disappearance of the signal, analyze rotational amplitudes and optical flaring as a proxy for magnetic activity, and estimate the mass of gas and dust present immediately prior to the potential breakout event. After demonstrating that our spectral and photometric data support a magnetospheric cloud and centrifugal breakout model and disfavor alternate scenarios, we discuss the possibility of a coronal mass ejection or stellar wind origin of the corotating material and we introduce a reionization mechanism as a potential explanation for more gradual variations in eclipse parameters. Finally, after comparing TIC 234284556 with previously identified “flux-dip” stars, we argue that TIC 234284556 may be an archetypal representative of a whole class of young, magnetically active stars.
The promise of gyrochronology is that, given a star’s rotation period and mass, its age can be inferred. The reality of gyrochronology is complicated by effects other than ordinary magnetized braking that alter stellar rotation periods. In this work, we present an interpolation-based gyrochronology framework that reproduces the time- and mass-dependent spin-down rates implied by the latest open cluster data, while also matching the rate at which the dispersion in initial stellar rotation periods decreases as stars age. We validate our technique for stars with temperatures of 3800–6200 K and ages of 0.08–2.6 gigayears (Gyr), and use it to reexamine the empirical limits of gyrochronology. In line with previous work, we find that the uncertainty floor varies strongly with both stellar mass and age. For Sun-like stars (≈5800 K), the statistical age uncertainties improve monotonically from ±38% at 0.2 Gyr to ±12% at 2 Gyr, and are caused by the empirical scatter of the cluster rotation sequences combined with the rate of stellar spin-down. For low-mass K dwarfs (≈4200 K), the posteriors are highly asymmetric due to stalled spin-down, and ±1σ age uncertainties vary non-monotonically between 10% and 50% over the first few gigayears. High-mass K dwarfs (5000 K) older than ≈1.5 Gyr yield the most precise ages, with limiting uncertainties currently set by possible changes in the spin-down rate (12% systematic), the calibration of the absolute age scale (8% systematic), and the width of the slow sequence (4% statistical). An open-source implementation, gyro-interp, is available online at github.com/lgbouma/gyro-interp.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.