Preface
Topoisomerases are complex molecular machines that modulate DNA topology to maintain chromosome superstructure and integrity. Although capable of stand-alone activity in vitro, topoisomerases frequently are linked to larger pathways and systems that resolve specific DNA superstructures and intermediates arising from cellular processes such as DNA repair, transcription, replication, and chromosome compaction. Topoisomerase activity is indispensible to cells, but requires the transient breakage of DNA strands. This property has been exploited, often for significant clinical benefit, by various exogenous agents that interfere with cell proliferation. Despite decades of study, surprising findings involving topoisomerases continue to emerge with respect to their cellular function, regulation, and utility as therapeutic targets.
Simultaneous measurements of DNA twist and extension have been used to measure physical properties of the double helix and to characterize structural dynamics and mechanochemistry in nucleoprotein complexes. However, the spatiotemporal resolution of twist measurements has been limited by the use of angular probes with large rotational drags, preventing the detection of short-lived intermediates or small angular steps. Here we introduce AuRBT, demonstrating a >100X improvement in time resolution over previous techniques. AuRBT employs gold nanoparticles as bright low-drag rotational and extensional probes, relying on instrumentation that combines magnetic tweezers with objective-side evanescent darkfield microscopy. In an initial application to molecular motor mechanism, we have examined the high-speed structural dynamics of DNA gyrase, revealing an unanticipated transient intermediate. AuRBT also enables direct measurements of DNA torque with >50X shorter integration times than previous techniques; here we demonstrate high-resolution torque spectroscopy by mapping the conformational landscape of a Z-forming DNA sequence.
Gyrase is an essential bacterial molecular motor that supercoils DNA using a conformational cycle in which chiral wrapping of > 100 base pairs confers directionality on topoisomerization. To understand the mechanism of this nucleoprotein machine, global structural transitions must be mapped onto the nucleotide cycle of ATP binding, hydrolysis and product release. Here we investigate coupling mechanisms using single-molecule tracking of DNA rotation and contraction during Escherichia coli gyrase activity under varying nucleotide conditions. We find that ADP must be exchanged for ATP to drive the rate-limiting remodeling transition that generates the chiral wrap. ATP hydrolysis accelerates subsequent duplex strand passage and is required for resetting the enzyme and recapturing transiently released DNA. Our measurements suggest how gyrase coordinates DNA rearrangements with the dynamics of its ATP-driven protein gate, how the motor minimizes futile cycles of ATP hydrolysis and how gyrase may respond to changing cellular energy levels to link gene expression with metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.