This research was based on the manufacture of new composite materials that offer technological possibilities in the development of new devices with greater efficiency. Electrospinning was used to form nylon 66/-tetra-(para-aminophenyl) porphyrin (H 2 T(p-NH 2 )PP)/graphene oxide (GO) composite film. Graphene oxide coatings were obtained from graphite, through mechanical exfoliation followed by calcination and ultrasonic agitation in an oxidant solution. These samples were characterized under SEM, FTIR, Raman spectroscopy, UV-vis and R-X techniques.
In this work, synthesis and characterization of reduced graphene oxide/polyaniline/Au nanoparticles (GO/PANI/NpAu) as a hybrid capacitor are presented. Graphite oxide (GO) was synthesized by a modified Hummer's method. Polyaniline was synthesized by chemical polymerization, and Au nanoparticles (NpAu) were added afterward. Fabrication of the electrodes consisted on the hybrid materials being deposited on carbon cloth electrodes. The chemical and structural properties of the electrode were characterized by high-resolution scanning electron microscopy (HRSEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (X-R), and Raman spectroscopy; the results confirm the graphene reduction, the covalent functionalization, and formation of nanocomposites and also show the polyaniline grafted graphene. The performance and evaluation of the electrodes based on grapheme oxide (GO), polyaniline (PANI), GO-PANI, and GO/PANI/NpAu nanocomposites over carbon cloth, stainless steel, and copper have been obtained in 1 M H 2 SO 4 solution, using electrochemical techniques namely: cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). They showed that GO/PANI/NpAu gave higher specific capacitance (SC) and energy values than PANI, and GO/PANI, in the order of 160 F/g. The present study introduces new hybrid material for energy applications, from the evaluation of their electrical contributions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.