Background Previous literatures revealed that gamma rays have an increasing effect on salt tolerance in different plants. In vitro experiment was conducted to study the effect of gamma rays (20 Gray) on salt tolerance of four potato cultivars (Lady Rosetta, Diamante, Gold, and Santana). Results Gamma-treated Santana plantlets were more tolerant to salinity as compared to other cultivars. It showed a significant increment of fresh weight (250% over the untreated). Gamma-treated plantlets of Lady Rosetta, Diamante, and Gold showed higher activity of peroxidase (POD) and polyphenol oxidase (PPO). Isoenzymes analysis showed an absence of POD 3, 4, and 5 in Gold plantlets. The dye of most PODs and PPOs bands were denser (more active) in gamma-treated plantlets of Santana as compared to other cultivars. Both gamma-treated and untreated plantlets showed the absence of PPO1 in Lady Rosetta and Diamante, and PPO 3, 4, and 5 in Gold plantlets. Genetic marker analysis using ISSR with six different primers showed obvious unique negative and positive bands with different base pairs in mutant plantlets as compared to the control, according to primer sequence and potato genotype. The 14A primer was an efficient genetic marker between mutated and unmutated potato genotypes. Santana had a unique fingerprint in the 1430-pb site, which can be a selectable marker for the cultivar. An increment in genetic distance between Gold cultivar and others proved that the mutation was induced because of gamma rays. Conclusion We assume that irradiation of potato callus by 20-Gy gamma rays is an effective process for inducing salt resistance. However, this finding should be verified under field conditions. Graphic Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.