Support vector machine (SVM) has become an increasingly popular tool for machine learning tasks involving classification. In this paper, we present a simple and effective method of detect and classify hard exudates. Automatic detection of hard exudates from retinal images is worth-studying problem since hard exudates are associated with diabetic retinopathy and have been found to be one of the most prevalent earliest signs of retinopathy. The algorithm is based on Discrete Cosine Transform (DCT) analysis and SVM makes use of color information to perform the classification of retinal exudates. We prospectively assessed the algorithm performance using a database containing 1200 retinal images with variable color, brightness, and quality. Results of the proposed system can achieve a diagnostic accuracy with 97.0% sensitivity and 98.7% specificity for the identification of images containing any evidence of retinopathy.
The recent advancement in computing technologies and resulting vision based applications has given rise to a novel practice called telemedicine that requires patient diagnosis images or allied information to recommend or even perform diagnosis practices being located remotely. However, to ensure accurate and optimal telemedicine there is the requirement of seamless or flawless biomedical information about patient. On the contrary, medical data transmitted over insecure channel often remains prone to manipulated or corrupted by attackers. The existing cryptosystems alone are not sufficient to deal with these issues and hence in this paper a highly robust reversible image steganography model has been developed for secret information hiding. Unlike traditional wavelet transform techniques, we incorporated Discrete Ripplet Transformation (DRT) technique for message embedding in the medical cover images. In addition to, ensure seamless communication over insecure channel, a dual cryptosystem model containing proposed steganography scheme and RSA cryptosystem has been developed. One of the key novelties of the proposed research work is the use of adaptive genetic algorithm (AGA) for optimal pixel adjustment process (OPAP) that enriches data hiding capacity as well as imperceptibility features. The performance assessment reveals that the proposed steganography model outperforms other wavelet transformation based approaches in terms of high PSNR, embedding capacity, imperceptibility etc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.