To assess the roadside soils contamination with Pb, Cd, and Zn, 34 soil samples were collected along Alexandria-Marsa Matruh highway, Egypt, and analyzed by using the atomic absorption. The contamination with these metals was evaluated by applying index of geoaccumulation ( geo ), contamination factor (CF), pollution load index (PLI), the single ecological risk index ( ), and the potential ecological risk index (PERI). The average concentrations of Pb, Cd, and Zn were 38.2, 2.3, and 43.4 g/g, respectively.geo indicates the pollution of soil with Pb and Cd as opposed to Zn. shows that the roadside soils had low risk from Pb and Zn and had considerable to high risk from Cd. Most of the samples (62%) present low PERI risk associated with metal exposure and the rest of the samples (38%) are of moderate PERI. The bioavailable fraction (EDTA-Extract) was 72.5 and 37.5% for Pb and Cd contents, respectively. These results indicate the remarkable effect of vehicular and agricultural activities on Pb and Cd contents in soil.
Southwest Giza area is one of the most complicated regions in Egypt because of the combination of agricultural, industrial and urbanization activities with few studies about water resources contamination with heavy metals. In this study, ten surface water samples and eight groundwater samples were collected and analyzed for pollution with Fe, Mn, As, Cr, Cd, Pb and Cu. The samples were collected randomly according to the topographic locations and accessibility. The surface water is suitable for both drinking and irrigation use according to its salinity (total dissolved solids, TDS < 500 mg/l) and content of major ions. Unfortunately, some samples contain concentrations of As, Cd, Cu and Pb higher than the WHO drinking water guidelines. The groundwater samples have TDS ranging from 204 to 2,100 mg/l. Also, the groundwater contains higher concentrations of Fe, Mn and As than surface water. The highest concentrations of heavy metals As, Cd and Pb were recorded in the desert fringes and close to the industrial complexes indicating the role of geological sediments in the transportation and migration of pollutants. The unconfined part of the Quaternary aquifer in the desert fringes is more vulnerable to contamination. The results of this study reflect the role of human and industrial activates in polluting water resources with heavy metals, which puts the aquatic environment in the study area under stress.
The northwestern part of Suez Gulf region is a strategic area in Egypt. It includes important sources of national income. To achieve the development goals, the government has established huge projects in this area (e.g. establishment and expanding of a large commercial port at Ain Sokhna, many industrial zones as well as tourism projects). The utilization of the Suez Gulf resources and their continuing development mainly depend on the creation of actual pollution control programs. The environmental quality control and pollution reduction activities are important ingredients of any economic development program. These different activities in this area depend mainly on the groundwater that is pumped intensively from different water bearing formations or aquifers. The main objective of the present work is compiling the previous studies from the 1980s up to 2015. These studies are concerned with estimating the concentrations of different pollutants in various ecosystems in the northwestern Suez Gulf region. Also, to provide an explanation for the movement of different pollutants such as organic and heavy metals from contaminated land to ground and surface (Gulf) waters. This issue has not been extensively surveyed before, and this review, gives specific directions for future monitoring and remediation strategies in this region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.