Al-Al2O3 and SiC metal matrix composites (MMCs) samples with different volume fractions up to 20% were produced by high-pressure torsion (HPT) using 10 GPa for 30 revolutions of Al-Al2O3, and SiC and powder metallurgy (PM). The effect of the processing method of micro-size Al MMCs on the density, microstructure evolution, mechanical properties, and tensile fracture mode was thoroughly investigated. HPT processing produces fully dense samples relative to those produced using powder metallurgy (PM). The HPT of the Al MMCs reduces the Al matrix grain size and fragmentation of the reinforcement particles. The Al matrix average grain size decreased to 0.39, 0.23, and 0.2 µm after the HPT processing of Al, Al-20% Al2O3, and SiC samples. Moreover, Al2O3 and SiC particle sizes decreased from 31.7 and 25.5 µm to 0.15 and 0.13 µm with a 99.5% decrease. The production of ultrafine grain (UFG) composite samples effectively improves the microhardness and tensile strength of the Al and Al MMCs by 31–88% and 10–110% over those of the PM-processed samples. The good bonding between the Al matrix and reinforcement particles noted in the HPTed Al MMCs increases the strength relative to the PM samples. The tensile fracture surface morphology results confirm the tensile properties results.
The motivation for the current study was to improve the wear and frictional properties of Al, Al–Al2O3, and SiC MMCs through HPT processing. The wear test using a tungsten carbide (WC) ball was carried out for different PM and HPT-processed Al and MMC samples. The effect of the sample processing methods on the wear rate, friction, and wear surface morphology was thoroughly investigated. The high hardness after Al grain refinement and reinforcement fragmentation through the HPT processing of the samples increased the wear resistance by 16–81% over that of the PM samples. The average coefficient values and variation ranges were reduced after HPT processing. The Al and Al MMC processing methods affected the wear mechanism and surface morphologies, as proven by the microscopic observations and analyses of the worn surfaces of the samples and WC balls.
The influence of the number of passes and the tube materials on the microstructural evolution, mechanical properties, and wear behavior of Cu and brass tubes after parallel tubular channel angular pressing (PTCAP) was investigated. The grain size decreased to final grain sizes of 138.6 nm and 142.7 nm, after PTCAP of the Cu and brass tubes was conducted in up to 4 and 2 passes, respectively. PTCAP contributes to obtaining an ultra-fine grain (UFG) microstructure, with a mixture of different grain sizes that conferred high hardness. The present results indicate the superior wear resistance of Cu and brass PTCAP tubes, relative to Cu and brass samples that were previously deformed by different severe plastic deformation (SPD) processes. The wear mechanism of the Cu tubes changed from delamination and cracks with a high degree of adhesive wear before PTCAP into a combination of adhesive and abrasive wear, with a decrease in the presence of oxygen content after the PTCAP procedure. The wear mechanism also changed from a combination of adhesive and abrasive mechanisms into abrasive ones with the absence of oxygen after the PTCAP of brass tubes.
Commercial Al-brass tube was successfully processed by Parallel Tubular Channel Angular Pressing (PTCAP) in 2 passes under an imposed strain of 1.49 per pass. The effect of the number of PTCAP passes on the microstructure and the mechanical properties (hardness, tensile, and wear mass loss) of the Al-brass tubes was fully investigated. The average grain size of the as-received tube decreased to 1.28 μm after up to two passes of PTCAP with a mixture of ultrafine grain (UFG) and coarse grain (CG). The annealed tubes’ tensile strength and Vickers hardness increased by 237.65% and 175.6%, respectively, after two passes. In addition, a ductile fracture occurred with a clear necking. The fracture surface morphology indicated an apparent decrease in dimple size after PTCAP processing, combined with a decrease in ductility. Moreover, the wear mass loss decreased with increasing number of PTCAP passes due to the decrease in the grain size, and the increase of the hardness of the tubes was enhanced after PTCAP processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.