The crystalline texture of arrays of low diameter Co nanowires (NWs) synthesized by electrodeposition using electrolytes with different acidities (pH in the range 2.0 to 6.6) was studied by the switching field distribution (SFD) and first order reversal curve (FORC) diagrams. Particularly, the SFD determined as the derivative dM/dH of the descending part of the major hysteresis loop (MHL) has proven to be a reliable and powerful method for the identification of different crystalline textures in the NWs and the quantification of their corresponding texture percentages. The presence of the fcc-like texture at low pH values and hcp textures with the c-axis perpendicular and parallel to the NWs axis at higher pH values have been identified by performing multiple Gaussian fits to the SFD by virtue of their different magnetic behavior observed during reversal of the magnetization. The field position and size of each curve in the multiple Gaussian fit provide information about the corresponding magnetic contribution and volumetric texture percentage of each crystalline texture in the NWs, respectively. The analysis of the SFD has been complemented and validated with FORC diagram measurements, showing that the width of the coercive field distribution (CFD) is in good agreement with the width of the SFD. Also, it has been found that the different branches observed in the FORC diagrams along the interaction axis provide further insight on the interaction between magnetocrystalline fields. This work provides a novel methodology for the use of magnetometry as a reliable technique for the study of the interplay between the microstructure and magnetic behavior of arrays of NWs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.