How do stimulus size and item number relate to the magnitude and direction of error on center estimation and line cancellation tests? How might this relationship inform theories concerning spatial neglect? These questions were addressed by testing twenty patients with right hemisphere lesions, eleven with left hemisphere lesions and eleven normal control subjects on multiple versions of center estimation and line cancellation tests. Patients who made large errors on these tests also demonstrated an optimal or pivotal stimulus value, i.e., a particular size center estimation test or number of lines on cancellation that either minimized error magnitude relative to other size stimuli (optimal) or marked the boundary between normal and abnormal performance (pivotal). Patients with right hemisphere lesions made increasingly greater errors on the center estimation test as stimuli were both larger and smaller than the optimal value, whereas those with left hemisphere lesions made greater errors as stimuli were smaller than a pivotal value. In normal subjects, the direction of errors on center estimation stimuli shifted from the right of true center to the left as stimuli decreased in size (i.e., the crossover effect). Right hemisphere lesions exaggerated this effect, whereas left hemisphere lesions diminished and possibly reversed the direction of crossover. Error direction did not change as a function of stimulus value on cancellation tests. The demonstration of optimal and pivotal stimulus values indicates that performances on center estimation and cancellation tests in neglect are only relative to the stimuli used. In light of other studies, our findings indicate that patients with spatial neglect grossly overestimate the size of small stimuli and underestimate the size of large stimuli, that crossover represents an "apparent" shift in error direction that actually results from normally occurring errors in size perception, and that the left hemisphere is specialized for one aspect of size estimation, whereas the right performs dual roles.
It is well known that line length has a systematic influence on line bisection error in neglect. Most patients with neglect misbisect long lines on the same side of true center as their brain lesion but then cross over on short lines, misbisecting them on the opposite side (i.e., crossover by line length). What is less recognized is that the spatial location of lines relative to the viewer can similarly induce a crossover effect when one considers line bisection error scores that have been averaged across individual line lengths. Patients with right hemisphere injury and neglect classically make averaged line bisection errors that fall right of true center on lines located either at midline or to the left of the viewer; however, we observed that the averaged line bisection error can fall left of true center when lines are located to the right of the viewer (i.e., crossover by spatial location). We hypothesized that crossover by both line length and spatial location stem from systematic errors in magnitude estimation, i.e., perceived line length. We tested predictions based on this hypothesis by examining how the crossover effect by line length is altered by the spatial location of lines along a horizontal axis relative to the viewer. Participants included patients with unilateral lesions of the right and left cerebral hemispheres and age-appropriate normal subjects. All groups demonstrated a crossover effect by line length at the midline location but the effect was altered by placing lines to the right and left of the viewer. In particular, patients with right hemisphere injury and neglect crossed-over across a broader range of line lengths when the lines were located to the right of the viewer rather than at either midline or left of the viewer. It is proposed that mental representations of stimulus magnitude are altered in neglect, in addition to mental representations of space, and that traditional accounts of neglect can be enhanced by including the psychophysical concept of magnitude estimation.
Most patients with neglect demonstrate a crossover effect on line bisection. Crossover refers to a pattern of performance in which long lines (>10 cm) are bisected ipsilateral to brain injury and short lines (<2 cm) are bisected contralateral to brain injury. Crossover bisections on short lines are of interest because they are not predicted by contemporary theories concerning neglect. However, we propose that the effect depends on two independent factors that normally influence bisection performance but are merely exaggerated in neglect—a tendency to overestimate the length of short lines and underestimate long lines and a tendency to orient attention preferentially in one spatial direction. We predicted that both patients with unilateral left and right hemisphere injury would demonstrate crossover on line bisection and that they would overestimate short lines and underestimate long lines upon direct visual inspection. Further, the 2 groups were predicted to demonstrate crossover in opposite directions owing to different lesion-induced biases in attentional orientation. Testing 5 patients with right hemisphere injury and 7 patients with left hemisphere injury confirmed each prediction. Additionally, errors in length estimation were exaggerated among patients with right hemisphere injury, most of whom had neglect. It is concluded that while crossover is accentuated in cases of neglect, it is not a consequence of neglect per se. As such, crossover bisections are not at odds with contemporary neglect theory. (JINS, 2002, 8, 107–114.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.