The development in the field MOF materials is moving from the discovery of new structures toward applications of the most promising materials. In most cases, specialized applications require incorporation of functional chemical groups. This work is a systematic investigation of the effect that simple substituents attached to the aromatic linker have on the stability and property to the parent MOF. A family of isoreticular MOFs, based on the UiO-66 structure was obtained from the three different linker ligands H2N−H2BDC, O2N−H2BDC, and Br−H2BDC. The physicochemical and chemical investigation of these materials demonstrate that this class of MOFs retains high thermal and chemical stabilities, even with functional groups present at the linker units. The results demonstrate the possibility of incorporating active functional groups into the UiO-66 structure almost without losing its exceptionally high thermal and chemical stability. It has been established that the functional groups, at least in the amino functionalized UiO-66 sample, are chemically available as evidenced by the H/D exchange experiment, making the tagged UiO series MOFs very interesting for further studies within the field of catalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.