The majority of the patients showed little differences in NTCPs between the different delineation guidelines. However, large NTCP differences >10% were found in 7% of the patients. For correct use of NTCP models in individual patients, uniform delineation guidelines are of great importance.
Large-field photon radiotherapy is current standard in the treatment of cervical cancer patients. However, with the increasing availability of Pencil Beam Scanning Proton Therapy (PBS-PT) and robust treatment planning techniques, protons may have significant advantages for cervical cancer patients in the reduction of toxicity. In this study, PBS-PT and photon Volumetric Modulated Arc Therapy (VMAT) were compared, examining target coverage and organ at risk (OAR) dose, taking inter-and intrafraction motion into account. Materials and methods: Twelve cervical cancer patients were included in this in-silico planning study. In all cases, a planning CT scan, five weekly repeat CT scans (reCTs) and an additional reCT 10 min after the first reCT were available. Two-arc VMAT and robustly optimised two-and four-field (2F and 4F) PBS-PT plans were robustly evaluated on planCTs and reCTs using setup and range uncertainty. Nominal OAR doses and voxel-wise minimum target coverage robustness were compared. Results: Average voxel-wise minimum accumulated doses for pelvic target structures over all patients were adequate for both photon and proton treatment techniques (D98 > 95%, [91.7-99.3%]). Average accumulated dose of the para-aortic region was lower than the required 95%, D98 > 94.4% [91.1-98.2%]. With PBS-PT 4F, dose to all OARs was significantly lower than with VMAT. Major differences were observed for mean bowel bag V 15Gy : 60% [39-70%] for VMAT vs 30% [10-52%] and 32% [9-54%] for PBS-PT 2F and 4F and for mean bone marrow V 10Gy : 88% [82-97%] for VMAT vs 66% [60-73%] and 67% [60-75%] for PBS-PT 2F and 4F. Conclusion: Robustly optimised PBS-PT for cervical cancer patients shows equivalent target robustness against inter-and intra-fraction variability compared to VMAT, and offers significantly better OAR sparing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.