The controlled growth of SnO2 nanoparticles for gas sensor applications is reported by these authors. Nb2O5 additive is used to control nucleation and growth of the SnO2 (see Figure), which is synthesized by the polymeric precursor method. Preliminary gas sensing measurements are performed and it is demonstrated that the response time of the Nb2O5‐doped SnO2 is faster than that of the undoped material.
The crystal growth process in colloidal nanocrystal systems is usually associated with the Ostwald-ripening mechanism. Here, we report on experimental evidence indicating that another crystal growth process took place in a colloidal nanocrystal system at room temperature. This crystal growth process is based on grain rotation among neighboring grains, resulting in a coherent grain–grain interface, which, by eliminating common boundaries, causes neighboring grains to coalesce, thereby forming a single larger nanocrystal. This phenomenon was observed in SnO2 nanocrystals (particle size ranging from 10 to 30 Å).
The classical model of particle coagulation on colloids is revisited to evaluate its applicability on the oriented attachment of nanoparticles. The proposed model describes well the growth behavior of dispersed nanoparticles during the initial stages of nanoparticle synthesis and during growth induced by hydrothermal treatments. Moreover, a general model, which combines coarsening (i.e., Ostwald ripening) and oriented attachment effects, is proposed as an alternative to explain deviations between experimental results and existing theoretical models.
The development of gas sensors with innovative designs and advanced functional materials has attracted considerable scientific interest given their potential for addressing important technological challenges. This work presents new insight towards the development of high‐performance p‐type semiconductor gas sensors. Gas sensor test devices, based on copper (II) oxide (CuO) with innovative and unique designs (urchin‐like, fiber‐like, and nanorods), are prepared by a microwave‐assisted synthesis method. The crystalline composition, surface area, porosity, and morphological characteristics are studied by X‐ray powder diffraction, nitrogen adsorption isotherms, field‐emission scanning electron microscopy and high‐resolution transmission electron microscopy. Gas sensor measurements, performed simultaneously on multiple samples, show that morphology can have a substantial influence on gas sensor performance. An assembly of urchin‐like structures is found to be most effective for hydrogen detection in the range of parts‐per‐million at 200 °C with 300‐fold larger response than the previously best reported values for semiconducting CuO hydrogen gas sensors. These results show that morphology plays an important role in the gas sensing performance of CuO and can be effectively applied in the further development of gas sensors based on p‐type semiconductors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.