The effect of Sr2+ substitution on the morphology, crystal structure, and optical properties of double perovskite oxide Ba2−xSrxZnWO6 (x = 0.00, 0.25, 0.50, 0.75, 1.00) were investigated. Scanning electronic microscopy demonstrated that all samples have similar microstructure morphology but differ in the range of grain sizes. X-ray diffraction measurements indicated that these materials crystallize in a (Fm-3m) cubic crystal structure, and also confirmed the tolerance factor. Rietveld analysis revealed that the lattice parameter decreased from 8.11834 to 8.039361 Å when the substitution of Ba2+ with Sr2+ cations increased from zero to 100%. Fourier transform infrared (FTIR) and Raman spectroscopies displayed a symmetric stretching vibration of WO6 octahedra at 825 cm−1, and an anti-symmetric stretching mode of WO6 was observed by FTIR at 620 cm−1. A strong peak at 420 cm−1 was also observed in the Raman spectra and is due to the W–O–W bending vibration modes. UV-Vis diffuse reflectance spectroscopy was carried out for the series, and the band gap energy decreased from 3.27 eV for Ba2ZnWO6 to 3.02 and 3.06 eV for Ba1.75Sr0.25ZnWO6 and Ba1.5Sr0.5ZnWO6, respectively. The excitation and emission photoluminescence properties were investigated at room temperature.
Ba2−xSrxZnWO6 double perovskite (DP) oxide compounds (x = 1, 1.25, 1.5, 1.75, 2) were successfully created by means of conventional solid-state techniques. The crystal structures of our series were studied using an X-ray diffractometer. The x = 1 compound has a cubic (Fm-3m) crystal structure, the 1 ≤ x ≤ 2 compounds have tetragonal (I4/m) symmetry, and the phase was transferred to monoclinic (P21/n) symmetry for the Sr2ZnWO6 (x = 2) compound. Scanning electron microscopy (SEM) was used to investigate the morphology of the series, showing that the samples had crystallized microstructures. Molecular bonds were investigated using Fourier transform infrared and Raman spectroscopies, which confirmed the double perovskite octahedral geometry for the samples in our series. Furthermore, the octahedral W–O6 anti-symmetric stretching mode was found to occur. The optical properties of the Ba2−xSrxZnWO6 series were studied using Ultraviolet–visible (UV–vis) diffuse reflectance and photoluminescence (PL) spectroscopies. The absorption edge of the samples appeared around the near-violet and visible spectra, between 336–360 nm. The band gap energy was investigated in two ways—using the absorption cutoff and Tauc plots—which increased from 3.52 to 3.7 eV with increasing substitution of Ba2+ by Sr2+. Furthermore, excitation and emission spectra were collected at room temperature. A broad band at 260–360 nm appeared in the PLE spectra for all samples, and the PL spectra of the samples had a band that spread from 320–450 nm.
Isoprene (C H) plays an important role in the formation of surface ozone (O3) and the secondary organic aerosol (SOA) which contributed to the climate change. This study aims to determine hourly distribution of tropospheric isoprene over the Western Coast of Antarctic Peninsula (WCAP) during the Malaysian Antarctic Scientific Expedition Cruise 2016 (MASEC′16). In-situ measurements of isoprene were taken using a custom-built gas chromatography with
The Ba 2 Zn 1-x Ni x WO 6 double perovskite oxides were synthesized using solid state reaction method. The effect of replacement of Zn 2+ with Ni 2+ cation on the structural properties was investigated by X-ray diffraction (XRD) at room temperature. From the X-ray diffraction and by means of standard Rietiveld method, the samples showed the same cubic crystal structure with (Fm-3m) space group and the crystallite size ranging from 71.91 nm to 148.71 nm. The unit cell volume was found to decrease as a result of the replacement, while there was no significant difference in the value of tolerance factor of the samples. This is may be due to the convergence of ionic radii of Ni 2+ and Zn 2+ cations. The Fourier Transform Infrared Spectroscopy (FTIR) was performed for the samples and the resultant characteristic absorption bands confirmed the double perovskite structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.