Today, public areas, such as airports, hospitals, city centers are monitored by surveillance systems. The widespread use of surveillance systems reduces security concerns while creating an amount of video data that cannot be examined by people in real-time. Therefore, the concept of automatic understanding of video activities has raised the standards of security camera systems. In this paper, we propose a framework (OF-ConvAE-LSTM) to detect anomalies using Convolutional Autoencoder and Convolutional Long Short-Term Memory in an unsupervised manner. Besides the deep learning model, the feature extraction stage based on dense optical flow is applied in the framework to obtain the velocity and direction information of foreground objects. The experiments were carried out on three popular public datasets consisting of Avenue, UCSD Ped1, and UCSD Peds2. The experimental results have shown that the proposed framework models the complex distribution of the pattern of regular motion changes with high accuracy. Besides, this method was observed to outperform state-of-the-art approaches based on unsupervised and semi-supervised deep learning models.INDEX TERMS Abnormal event detection, convolutional autoencoder, long short-term memory, optical flow.
Accurate and efficient localization of the optic disk (OD) in retinal images is an essential process for the diagnosis of retinal diseases, such as diabetic retinopathy, papilledema, and glaucoma, in automatic retinal analysis systems. This paper presents an effective and robust framework for automatic detection of the OD. The framework begins with the process of elimination of the pixels below the average brightness level of the retinal images. Next, a method based on the modified robust rank order was used for edge detection. Finally, the circular Hough transform (CHT) was performed on the obtained retinal images for OD localization. Three public datasets were used to evaluate the performance of the proposed method. The optic disks were successfully located with the success rates of 100%, 96.92%, and 98.88% for the DRIVE, DIARETDB0, and DIARETDB1 datasets, respectively.
Objective Despite improvements in diagnostic methods, acromegaly is still a late-diagnosed disease. In this study, it was aimed to automatically recognize acromegaly disease from facial images by using deep learning methods and to facilitate the detection of the disease. Design Cross-sectional, single-center study Methods The study included 77 acromegaly (52.56±11.74, 34 males/43 females) patients and 71 healthy controls (48.47±8.91, 39 males/32 females), considering gender and age compatibility. At the time of the photography, 56/77 (73%) of the acromegaly patients were in remission. Normalized images were obtained by scaling, aligning, and cropping video frames. Three architectures named ResNet50, DenseNet121, and InceptionV3 were used for the transfer learning-based convolutional neural network (CNN) model developed to classify face images as “Healthy” or “Acromegaly”. Additionally, we trained and integrated these CNN machine learning methods to create an Ensemble Method (EM) for facial detection of acromegaly. Results The positive predictive values obtained for acromegaly with the ResNet50, DenseNet121, InceptionV3, and EM were calculated as 0.958, 0.965, 0.962, and 0.997, respectively. The average sensitivity, specificity, precision, and correlation coefficient values calculated for each of the ResNet50, DenseNet121, and InceptionV3 models are quite close. On the other hand, EM outperformed these three CNN architectures and provided the best overall performance in terms of sensitivity, specificity, accuracy, and precision as 0.997, 0.997, 0.997, and 0.998, respectively. Conclusions The present study provided evidence that the proposed AcroEnsemble Model might detect acromegaly from facial images with high performance. This highlights that artificial intelligence programs are promising methods for detecting acromegaly in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.