In this work, we consider a non-parametric estimator of the variance in one-dimensional diffusion models or, more generally, in Itô processes with a deterministic diffusion term and a general non-anticipative drift. The estimation is based on the quadratic variation of discrete time observations over a finite interval. In particular, a central limit theorem (CLT) is proved for the deviation in L p norm (p ≥ 1) between the variance and this estimator. The method of the proof consists in writing the L p norm of the deviation, when the drift term is equal to zero, as a sum of 4-dependent random variables. The moments are then computed by means of a Gaussian approximation and a CLT for m-dependent random variables is applied. The convergence is stable in law, this allows the result for processes with general drifts to be obtained, by using Girsanov's formula.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.