We report the effect of a bovine serum albumin (BSA) conjugate of a synthetic hexasaccharide (HS) related to the fragment of the capsular polysaccharide (PS) of Streptococcus pneumoniae type 14 on the stimulation of innate immune system and the subsequent development of a PS-specific antibody response. Glycoconjugate (GC) in the presence (GC + AL) or absence of aluminum hydroxide was administered to mice twice. GC increased the number of TLR2-expressing cells and induced the maturation of dendritic cells (CD11c+, CD80+ and, MHCII+), which secreted IL-1β, IL-6, and TNFα into the culture medium. The level of IL-1β, IL-10, IFNγ, and TNFα in the blood increased within 24 h after the single GC administration to mice. On day 7, the numbers of splenic CD4+ and CD8+ T lymphocytes and B lymphocytes increased. After the second immunization, the levels of CD4+ and CD8+ T lymphocytes were lower than in the control, whereas the B cell, NK cell, and MHC class II-expressing cell numbers remained enhanced. However, of the presence of anti-PS, IgG antibodies were not detected. The addition of aluminum hydroxide to GC stimulated the production of GM-CSF, IL-1β, IL-5, IL-6, IL-10, IL-17, IFNγ, and TNFα. Anti-PS IgG1 antibody titers 7 days after the second immunization were high. During that period, normal levels of splenic CD4+ T lymphocytes were maintained, whereas reduced CD8+ T lymphocyte numbers and increased levels of B lymphocytes, NK cells, and MHC class II-expressing cell numbers were observed. Anti-PS IgG levels diminished until day 92. A booster immunization with GC + AL stimulated the production of anti-PS IgG memory antibodies, which were determined within 97 days. The elucidation of specific features of the effect of the synthetic HS conjugate on the stimulation of innate, cell-mediated immunity, and antibody response can favor the optimization of GC vaccine design.
Beta-glucans, homopolysaccharides composed of 3,6-branching β-(1→3)-D-glucan chains, attract great interest as inducers of cytokine synthesis. In this work, we studied the ability of linear fragments of beta-glucan chains to activate cytokine synthesis. Synthetic nona-β-(1→3)-D-glucoside (SO) representing a linear fragment of beta-glucan chain, endotoxin (ED), and natural β-(1→3)-D-glucan (GL) were tested for their role as inducers of cytokines in whole peripheral blood cultures collected from 17 individuals. The concentrations of IL-12p70, IFN-γ, IL-2, IL-10, IL-8, IL-6, IL-4, IL-5, IL-1β, TNF-α, and TNF-β were measured in the supernatants after 2, 24, and 48 h of cell culturing. SO, ED, and GL stimulated production of pro-inflammatory IFN-γ, IL-1β, IL-2, IL-6, IL-8, TNF-α and anti-inflammatory IL-10. The highest levels of biosynthesis after stimulation with SO were registered for IL-6, IL-8, and TNF-α. SO stimulated production of all cytokines (except IFN-γ) to a lesser extent than ED and GL. The IFN-γ/IL-10 (Th1/Th2) ratios after 24 and 48 h of culturing were 3.1 and 7.5 for SO; 0.03 and 0.1 for GL; and 0.06 and 0.2 for ED, respectively. The results indicate that linear fragments of beta-glucans cause a more pronounced shift of immune response towards the pro-inflammatory (Th1) type than beta-glucan itself.
Tγδ and B1 lymphocytes are essential components of the mucosal immune system, activated directly by different bacterial and viral ligands without additional costimulatory signals and preprocessing of other immune effectors. This ability enables the immune system to provide rapid protection against pathogens and contributes to the decoding mechanism of the sensitizing activity of mucosal antigens. The early interaction of these cells results in the production of antibodies of immunoglobulin M (IgM) and IgA isotypes, but not immunoglobulin E (IgE). We studied the subcutaneous, intranasal, and oral delivery as three major routes of potential entry for antigens of opportunistic microorganisms, using the immunomodulator Immunovac-VP-4, which is able to activate Tγδ and B1 lymphocytes. The subcutaneous and intranasal routes produced a significant increase of these cells in lymph nodes associated with the nasal cavity (NALT) and in those associated with bronchial tissue (BALT). The oral route significantly increased levels of these cells in the spleen, in NALT, BALT, and in nodes associated with the gut (GALT). We found that mucosal application of Immunovac-VP-4, which contains antigens of conditionally pathogenic microorganisms, in conjunction with the activation of Tγδ and B1, induces adaptive immune mechanisms not only in the lymphoid formations associated with the respiratory system and with GALT, but also in the spleen [increased expression of cluster of differentiation 3 (CD3), CD4, CD8, CD19, and CD25]. This indicates that there is migration of lymphoid cells from the regional lymph nodes and mucosal lymphoid tissues via the lymph and blood to distant organs, resulting in lymphoid development, and both local and systemic immunity. Mucosal application of Immunovac-VP-4 in mice potentiates the cytotoxic activity of NK cells in the NALT, BALT, and GALT. The highest cytotoxicity was observed in cells, derived from lymphoid tissue of the intestine after oral immunization. Although we found that cytokine production was increased by all three immunization routes, it was most intensive after subcutaneous injection. Our findings confirm that there is an intensive exchange of lymphocytes not only between lymphoid formations in the mucous membranes of the respiratory tract and of GALT, but also with the spleen, which means that if effective mucosal vaccines are developed, they can induce both local and systemic immunity.
We studied the effects of immunization with a conjugate of carrier protein and hexasaccharide ligand related to a fragment of capsular of Str. pneumoniae serotype 14 polysaccharide chain on activation of innate and adaptive immunity. It was found that two-fold immunization with the glycoconjugate adsorbed on aluminum hydroxide significantly increased the titer of IgG antibodies to capsular polysaccharide in the blood and protected 100% mice from infection with Str. pneumoniae serotype 14. Enhanced bactericidal activity of peripheral blood lymphocytes of mice was found 4 and 24 h after the first immunization with the immobilized glycoconjugate. Adsorption of the glycoconjugate on aluminum hydroxide resulted in modification of the immune processes at the stage of activation of innate immunity and subsequent strengthening of the adaptive immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.