In the present paper, we consider a Cauchy problem for a linear second order in time abstract differential equation with pure delay. In the absence of delay, this problem, known as the harmonic oscillator, has a two-dimensional eigenspace so that the solution of the homogeneous problem can be written as a linear combination of these two eigenfunctions. As opposed to that, in the presence even of a small delay, the spectrum is infinite and a finite sum representation is not possible. Using a special function referred to as the delay exponential function, we give an explicit solution representation for the Cauchy problem associated with the linear oscillator with pure delay. Finally, the solution asymptotics as the delay parameter goes to zero is studied. In contrast to earlier works, no positivity conditions are imposed.MSC: Primary 34K06; 39A06; 39B42; secondary 34K26
We study the inverse coefficient problem for the equation of longitudinal wave propagation with non-self-adjoint boundary conditions. The main purpose of this paper is to prove the existence and uniqueness of the classical solutions of an inverse boundary-value problem. To investigate the solvability of the inverse problem, we carried out a transformation from the original problem to some equivalent auxiliary problem with trivial boundary conditions. Applying the Fourier method and contraction mappings principle, the solvability of the appropriate auxiliary inverse problem is proved. Furthermore, using the equivalency, the existence and uniqueness of the classical solution of the original problem are shown.
This article studies a nonlocal inverse boundary-value problem for a two-dimensional second-order parabolic equation in a rectangular domain. The purpose of the article is to determine the unknown coefficient and the solution of the considered problem. To investigate the solvability of the inverse problem, we transform the original problem into some auxiliary problem with trivial boundary conditions. Using the contraction mappings principle, existence and uniqueness of the solution of an equivalent problem are proved. Further, using the equivalency, the existence and uniqueness theorem of the classical solution of the original problem is obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.