BackgroundIntermittent preventive treatment in pregnancy has not been evaluated outside of Africa. Low birthweight (LBW, <2,500 g) is common in Papua New Guinea (PNG) and contributing factors include malaria and reproductive tract infections.MethodsFrom November 2009 to February 2013, we conducted a parallel group, randomised controlled trial in pregnant women (≤26 gestational weeks) in PNG. Sulphadoxine-pyrimethamine (1,500/75 mg) plus azithromycin (1 g twice daily for 2 days) (SPAZ) monthly from second trimester (intervention) was compared against sulphadoxine-pyrimethamine and chloroquine (450 to 600 mg, daily for three days) (SPCQ) given once, followed by SPCQ placebo (control). Women were assigned to treatment (1:1) using a randomisation sequence with block sizes of 32. Participants were blinded to assignments. The primary outcome was LBW. Analysis was by intention-to-treat.ResultsOf 2,793 women randomised, 2,021 (72.4%) were included in the primary outcome analysis (SPCQ: 1,008; SPAZ: 1,013). The prevalence of LBW was 15.1% (305/2,021). SPAZ reduced LBW (risk ratio [RR]: 0.74, 95% CI: 0.60–0.91, P = 0.005; absolute risk reduction (ARR): 4.5%, 95% CI: 1.4–7.6; number needed to treat: 22), and preterm delivery (0.62, 95% CI: 0.43–0.89, P = 0.010), and increased mean birthweight (41.9 g, 95% CI: 0.2–83.6, P = 0.049). SPAZ reduced maternal parasitaemia (RR: 0.57, 95% CI: 0.35–0.95, P = 0.029) and active placental malaria (0.68, 95% CI: 0.47–0.98, P = 0.037), and reduced carriage of gonorrhoea (0.66, 95% CI: 0.44–0.99, P = 0.041) at second visit. There were no treatment-related serious adverse events (SAEs), and the number of SAEs (intervention 13.1% [181/1,378], control 12.7% [174/1,374], P = 0.712) and AEs (intervention 10.5% [144/1,378], control 10.8% [149/1,374], P = 0.737) was similar. A major limitation of the study was the high loss to follow-up for birthweight.ConclusionsSPAZ was efficacious and safe in reducing LBW, possibly acting through multiple mechanisms including the effect on malaria and on sexually transmitted infections. The efficacy of SPAZ in the presence of resistant parasites and the contribution of AZ to bacterial antibiotic resistance require further study. The ability of SPAZ to improve pregnancy outcomes warrants further evaluation.Trial registrationClinicalTrials.gov NCT01136850 (06 April 2010).Electronic supplementary materialThe online version of this article (doi:10.1186/s12916-014-0258-3) contains supplementary material, which is available to authorized users.
Background Plasmodium falciparum in pregnancy results in substantial poor health outcomes for both mother and child, particularly in young, primigravid mothers who are at greatest risk of placental malaria (PM) infection. Complications of PM include maternal anaemia, low birth weight and preterm delivery, which contribute to maternal and infant morbidity and mortality in coastal Papua New Guinea (PNG).MethodsPlacental biopsies were examined from 1451 pregnant women who were enrolled in a malaria prevention study at 14–26 weeks gestation. Clinical and demographic information were collected at first antenatal clinic visits and women were followed until delivery. Placental biopsies were collected and examined for PM using histology. The presence of infected erythrocytes and/or the malaria pigment in monocytes or fibrin was used to determine the type of placental infection.ResultsOf 1451 placentas examined, PM infection was detected in 269 (18.5%), of which 54 (3.7%) were acute, 55 (3.8%) chronic, and 160 (11.0%) were past infections. Risk factors for PM included residing in rural areas (adjusted odds ratio (AOR) 3.65, 95% CI 1.76–7.51; p ≤ 0.001), being primigravid (AOR 2.45, 95% CI 1.26–4.77; p = 0.008) and having symptomatic malaria during pregnancy (AOR 2.05, 95% CI 1.16–3.62; p = 0.013). After adjustment for covariates, compared to uninfected women, acute infections (AOR 1.97, 95% CI 0.98–3.95; p = 0.056) were associated with low birth weight babies, whereas chronic infections were associated with preterm delivery (AOR 3.92, 95% CI 1.64–9.38; p = 0.002) and anaemia (AOR 2.22, 95% CI 1.02–4.84; p = 0.045).ConclusionsAmong pregnant PNG women receiving at least one dose of intermittent preventive treatment in pregnancy and using insecticide-treated bed nets, active PM infections were associated with adverse outcomes. Improved malaria prevention is required to optimize pregnancy outcomes.
BackgroundThe diagnosis of malaria during pregnancy is complicated by placental sequestration, asymptomatic infection, and low-density peripheral parasitaemia. Where intermittent preventive treatment (IPT) with sulfadoxine-pyrimethamine is threatened by drug resistance, or is inappropriate due to low transmission, intermittent screening and treatment (ISTp) with rapid diagnostic tests for malaria (RDT) could be a valuable alternative. Therefore, the accuracy of RDTs to detect peripheral and placental infection was assessed in a declining transmission setting in Papua New Guinea (PNG).MethodsThe performance of a combination RDT detecting histidine-rich protein-2 (HRP-2) and Plasmodium lactate dehydrogenase (pLDH), and light microscopy (LM), to diagnose peripheral Plasmodium falciparum and Plasmodium vivax infections during pregnancy, were assessed using quantitative real-time PCR (qPCR) as the reference standard. Participants in a malaria prevention trial in PNG with a haemoglobin ≤90 g/L, or symptoms suggestive of malaria, were tested. Ability of RDT and LM to detect active placental infection on histology was evaluated in some participants.ResultsAmong 876 women, 1162 RDTs were undertaken (anaemia: 854 [73.5 %], suspected malaria: 308 [26.5 %]). qPCR detected peripheral infection during 190 RDT episodes (165 P. falciparum, 19 P. vivax, 6 mixed infections). Overall, RDT detected peripheral P. falciparum infection with 45.6 % sensitivity (95 % CI 38.0–53.4), a specificity of 96.4 % (95.0–97.4), a positive predictive value of 68.4 % (59.1–76.8), and a negative predictive value of 91.1 % (89.2–92.8). RDT performance to detect P. falciparum was inferior to LM, more so amongst anaemic women (18.6 vs 45.3 % sensitivity, Liddell’s exact test, P < 0.001) compared to symptomatic women (72.9 vs 82.4 % sensitivity, P = 0.077). RDT and LM missed 88.0 % (22/25) and 76.0 % (19/25) of P. vivax infections, respectively. In a subset of women tested at delivery and who had placental histology (n = 158) active placental infection was present in 19.6 %: all three peripheral blood infection detection methods (RDT, LM, qPCR) missed >50 % of these infections.ConclusionsIn PNG, HRP-2/pLDH RDTs may be useful to diagnose peripheral P. falciparum infections in symptomatic pregnant women. However, they are not sufficiently sensitive for use in intermittent screening amongst asymptomatic (anaemic) women. These findings have implications for the management of malaria in pregnancy. The adverse impact of infections undetected by RDT or LM on pregnancy outcomes needs further evaluation.Electronic supplementary materialThe online version of this article (doi:10.1186/s12936-015-0927-5) contains supplementary material, which is available to authorized users.
Improved methods for malaria diagnosis are urgently needed. Here, we evaluate a novel method named rotating-crystal magneto-optical detection (RMOD) in 956 suspected malaria patients in Papua New Guinea. RMOD tests can be conducted within minutes and at low cost. We systematically evaluate the capability of RMOD to detect infections by directly comparing it with expert light microscopy, rapid diagnostic tests and polymerase chain reaction on capillary blood samples. We show that compared to light microscopy, RMOD exhibits 82% sensitivity and 84% specificity to detect any malaria infection and 87% sensitivity and 88% specificity to detect Plasmodium vivax. This indicates that RMOD could be useful in P. vivax dominated elimination settings. Parasite density correlates well with the quantitative magneto-optical signal. Importantly, residual hemozoin present in malaria-negative patients is also detectable by RMOD, indicating its ability to detect previous infections. This could be exploited to reveal transmission hotspots in low-transmission settings.
BackgroundMalaria in early pregnancy is difficult to study but has recently been associated with fetal growth restriction (FGR). The pathogenic mechanisms underlying malarial FGR are poorly characterized, but may include impaired placental development. We used in vitro methods that model migration and invasion of placental trophoblast into the uterine wall to investigate whether soluble factors released into maternal blood in malaria infection might impair placental development. Because trophoblast invasion is enhanced by a number of hormones and chemokines, and is inhibited by pro-inflammatory cytokines, many of which are dysregulated in malaria in pregnancy, we further compared concentrations of these factors in blood between malaria-infected and uninfected pregnancies.Methodology/Principal FindingsWe measured trophoblast invasion, migration and viability in response to treatment with serum or plasma from two independent cohorts of Papua New Guinean women infected with Plasmodium falciparum or Plasmodium vivax in early pregnancy. Compared to uninfected women, serum and plasma from women with P. falciparum reduced trophoblast invasion (P = .06) and migration (P = .004). P. vivax infection did not alter trophoblast migration (P = .64). The P. falciparum-specific negative effect on placental development was independent of trophoblast viability, but associated with high-density infections. Serum from P. falciparum infected women tended to have lower levels of trophoblast invasion promoting hormones and factors and higher levels of invasion-inhibitory inflammatory factors.Conclusion/SignificanceWe demonstrate that in vitro models of placental development can be adapted to indirectly study the impact of malaria in early pregnancy. These infections could result in impaired trophoblast invasion with reduced transformation of maternal spiral arteries due to maternal hormonal and inflammatory disturbances, which may contribute to FGR by limiting the delivery of maternal blood to the placenta. Future prevention strategies for malaria in pregnancy should include protection in the first half of pregnancy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.