BACKGROUND Ionic liquids (ILs) have been used as additives to immobilise lipase from a new source of Bacillus sp. (ITP‐001) by the physical adsorption method supporting green poly(3‐hydroxybutyrate‐co‐hydroxyvalerate) (PHBV) in order to evaluate the influence of the cationic core ([C4mpy]Cl, [C4min]Cl), of anions ([C4min]Cl, [C4min]N(CN)2, [C4min]Tf2N) and the cation chain length ([C2min]Tf2N, [C4min]Tf2N)) in the immobilization process. The immobilized biocatalysts (IB) were characterized with regard to morphological and physico‐chemical properties, and total activity recovery yield (Ya) and biochemical properties of more efficient IB were evaluated. RESULT Total activity recovery yield (Ya) for the immobilized biocatalysts employing LI as additives always resulted in higher values compared with the control. The most efficient was using the more hydrophobic IL [C4min]Tf2N, which represents a 2‐fold greater increase in the recovery of enzymatic activity. It retained more than 73% of its original activity after 20 reuses compared with the control, which, after ten cycles, retained only 33% of its original activity. CONCLUSION The anions and the cation chain length of ionic liquids have a strong influence on the immobilization process. The results for biocatalyst immobilized with [C4min]Tf2N showed an increase in total activity recovery yield and considerable improvement in operational stability. © 2014 Society of Chemical Industry
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.