Previous studies have shown that number processing can induce spatial biases in perception and action and can trigger the orienting of visuospatial attention. Few studies, however, have investigated how spatial processing and visuospatial attention influences number processing. In the present study, we used the optokinetic stimulation (OKS) technique to trigger eye movements and thus overt orienting of visuospatial attention. Participants were asked to stare at OKS, while performing parity judgements (Experiment 1) or number comparison (Experiment 2), two numerical tasks that differ in terms of demands on magnitude processing. Numerical stimuli were acoustically presented, and participants responded orally. We examined the effects of OKS direction (leftward or rightward) on number processing. The results showed that rightward OKS abolished the classic number size effect (i.e., faster reaction times for small than large numbers) in the comparison task, whereas the parity task was unaffected by OKS direction. The effect of OKS highlights a link between visuospatial orienting and processing of number magnitude that is complementary to the more established link between numerical and visuospatial processing. We suggest that the bidirectional link between numbers and space is embodied in the mechanisms subserving sensorimotor transformations for the control of eye movements and spatial attention.
Growing evidence suggests that mental calculation might involve movements of attention along a spatial representation of numerical magnitude. Addition and subtraction on nonsymbolic numbers (numerosities) seem to induce a "momentum" effect, and have been linked to distinct patterns of neural activity in cortical regions subserving attention and eye movements. We investigated whether mental arithmetic on symbolic numbers, a cornerstone of abstract mathematical reasoning, can be affected by the manipulation of overt spatial attention induced by optokinetic stimulation (OKS). Participants performed additions or subtractions of auditory two-digit numbers during horizontal (experiment 1) or vertical OKS (experiment 2), and eye movements were concurrently recorded. In both experiments, the results of addition problems were underestimated, whereas results of subtractions were overestimated (a pattern that is opposite to the classic Operational Momentum effect). While this tendency was unaffected by OKS, vertical OKS modulated the occurrence of decade errors during subtractions (i.e., fewer during downward OKS and more frequent during upward OKS). Eye movements, on top of the classic effect induced by OKS, were affected by the type of operation during the calculation phase, with subtraction consistently leading to a downward shift of gaze position and addition leading to an upward shift. These results highlight the pervasive nature of spatial processing in mental arithmetic. Furthermore, the preeminent effect of vertical OKS is in line with the hypothesis that the vertical dimension of space-number associations is grounded in universal (physical) constraints and, thereby, more robust than situated and culture-dependent associations with the horizontal dimension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.