On 3 July 1987, a seismic sequence, with a mainshock of ML 5, took place in the offshore Adriatic, close to the coast of Porto San Giorgio (PSG), Italy. We present an accurate relocation of the PSG seismic sequence using a nonlinear probabilistic approach (Lomax et al., 2000). The trade‐off between the hypocentral location and the velocity model was exhaustively explored using six different velocity models available for the area provided by previous studies. Through numerous tests performed by relocating the mainshock, we selected the two best velocity models providing two different depths (2.0 and 18.0 km). To resolve this intrinsic ambiguity, we developed a technique that uses the macroseismic intensity field data based on a grid search of the magnitude–depth space. The results show that the mainshock has a depth of 5.7 km and a magnitude (ML) equal to 5; moreover, the relocated seismic sequence (∼30 events) developed in the upper portion of the crust (at a depth less than 15 km), thus activating thrust faults, which is typical of the main geological features that characterize the outer Apennines thrust belt and the Adriatic foreland folds. Because the Adriatic Sea hosts several hydrocarbon (mainly gas) production fields located near active faults, with some of them in the area of this study, analyzing the instrumental seismicity is necessary to better understand the seismicity generated by these seismogenic faults and improve the assessment of the area’s seismic hazards.
<p>Enhanced Geothermal Systems apply the pressurized fluid injection to fracture impermeable rocks to form pathways in which water circulates. The cold water under high pressure is pumped into the hot subsoil, where it heats up and returns to the surface. However, the induced fractures may coalesce into unwanted paths that allow the fluids to reach pre-existing faults, triggering major seismic events.</p><p>This work investigates the relationship between injection and a degree of disordering of sources, ZZ, at Cooper Basin geothermal field in Australia, following the methodology developed and applied to study The Geysers geothermal field case (Lasocki & Orlecka-Sikora, 2020). The parameter ZZ quantifies the potential of seismicity to build pathways for fluid migration. It is the average distance between the seismic events in the eight-dimensional parameter space consisting of three hypocentral coordinates, T- and P-axis plunges, T-axis trend, and polar and azimuthal angles in the spherical system of coordinates beginning at the open hole of an injection well. A decrease of ZZ indicates an increasing hazard of forming far-reaching migration pathways. In The Geysers case, ZZ turned out to be highly correlated with the injection rate.</p><p>Here we focus on the case of Habanero 4 well stimulation from 17 - November 30, 2012 (data access, see: IS EPOS, 2020). We processed 489 seismic events with known focal mechanisms. The events moment magnitude varies between 0.8 and 3.1.&#160;&#160;</p><p>Our analysis shows that ZZ is significantly correlated with both the injection rate and the wellhead pressure. The higher the injection rate / the wellhead pressure was, the less probable was the creation of undesired fluid migration pathways. The Cooper Basin&#8217;s and The Geyser&#8217;s reservoir rocks are vastly different, the former &#8211; granite, the latter &#8211; greywacke sandstone, likewise the stimulation techniques applied in these two reservoirs. However, in both cases, ZZ was positively correlated with injection rate; thus, the potential to build unwanted paths for fluids was negatively correlated. These results suggest that such correlation may be a global feature of rock fracturing caused by pressurized fluid injections.</p><p><em>This work has been supported by S4CE (Science for Clean Energy) project, funded from the European Union&#8217;s Horizon 2020 - Framework Programme, under grant agreement No 764810 and by PRIN-MATISSE (20177EPPN2) project funded by Italian Ministry of Education and Research.</em></p><p>&#160;</p><p><strong>References:</strong></p><p>IS EPOS (2020), Episode: COOPER BASIN, https://tcs.ah-epos.eu/#episode:COOPER_BASIN, doi:10.25171/InstGeoph_PAS_ISEPOS-2020-001</p><p>Lasocki, S., & Orlecka-Sikora, B. (2020). High injection rates counteract formation of far-reaching fluid migration pathways at The Geysers geothermal field. Geophysical Research Letters, 47, e2019GL086212. https://doi.org/10.1029/2019GL086212</p>
<p>The Adriatic region has always attracted the interests of researchers involved in the study of the tectonic processes that controlled the evolution of the Alpine-Mediterranean area. It has been considered as an undeformed area, an aseismic, rigid block located between two active orogenic belts, the Apennines and External Dinarides thrust belts. Nevertheless, new scientific evidences reveal a complex structural framework in which active faults are capable to produce seismic activity not only along the borders of Adriatic Sea, but also in the offshore areas. In fact, the outer thrusts of Apennines and Dinarides orogenic belts propagated from the coasts to the offshore areas originating active, NW-SE trending anticlines and thrust faults that affects the Plio-Quaternary sequences.</p><p>Defining the seismotectonics of Adriatic domain and studying the active tectonics of the area with its seismogenic potential represent a challenge because the sea prevents direct observation of main geological and structural lineaments and the deployment of standard seismic networks for a more accurate analysis of seismicity. Despite the existence of new evidences, derived from seismic profiles and borehole data, by hydrocarbon exploration, correct seismic hazard estimates of Adriatic Sea require original and accurate data on the seismic activity that can allow to depict the number, size and geometry of seismogenic sources.</p><p>In this work, we focused our attention on the seismic sequence, consisting of about 230 events, &#160;which occurred along the Central Adriatic coast, in the Conero offshore, during the 2013-2104, with a M<sub>L</sub> 4.9 mainshock located at 20 km far away from city of Ancona, the main city of Marche region. After a careful and innovative selection of the data recorded from the Italian National Seismic Network, operated by the Istituto Nazionale di Geofisica e Vulcanologia, the earthquakes were relocated according to a probabilistic approach. By the inversion of the polarity of the P-wave first arrivals, the focal mechanisms were estimated and finally the local magnitudes were re-calculated. Moreover, in order verify if there has been a migration of seismicity with the activation of different faults during the seismic sequence, the analysis of spatio-temporal evolution of the seismic sequence was performed. Preliminary results show that the seismic sequence was originated mainly at small depths (< 10 km) along NW-SE trending thrust fault structures as evidenced by fault plane solutions, consistent with NE-SW horizontal, maximum compression of the outer front of Apennines thrust belt, still active in the Central Adriatic offshore.</p>
Loss outcomes from geohazards are compounded by an array of human risk factors. The combination of geohazards and human risk factors can generate multi-risk cascades. In the historical record, disasters arising from such multi-risk cascades are comparatively rare. However, far more common are near-misses, where a disaster tipping point to massive destructive energy release and expanding losses was narrowly averted. What happened historically is only one realization of what might have happened. Due to psychological outcome bias, people pay far less attention to near-misses than to actual losses. A downward counterfactual is a psychological term for a thought about the past, where things turned for the worse. Exploration of downward counterfactuals enhances risk awareness and can contribute to risk preparedness. There are no databases of multi-risk cascade near-misses, but insights can be gained from downward counterfactual analysis. Geohazard examples of multi-risk downward counterfactuals are given, including cases of critical infrastructure damage. A downward counterfactual can drive a minor hazard event beyond the disaster tipping point boundary, and turn a disaster into a major catastrophe. To illustrate the latter, a downward counterfactual analysis is presented of the Fukushima nuclear accident of 11 March 2011, which might have crossed the tipping point boundary into a multi-risk cascade catastrophe.
The increase of the world population has led to a major demand for energy with a consequent huge exploitation of natural fossil resources. To build a sustainable future and reach the goals of the green economy, it is necessary to gradually use low-carbon energies taking into account the possible risks associated with each type of energy production. A much-debated incidental event is the anthropogenic or induced seismicity connected with the exploitation of energy geo-resources. It arises because of changes in the pore pressure of subsurface rocks that, in turn, create increased stress that can exceed the threshold value for fracture. This situation may verify from underground extraction or injection of fluids, geothermal energy production, storage of CO2, natural gas, or hydrogen in underground cavities. The interest of the scientific community, politics and society towards this issue has grown in the last decade especially after the wide use of the fracking technique in the United States and the occurrence of the 2012 Emilia Romagna earthquake (Italy). Both conventional and unconventional geo-resources exploitation techniques can induce seismicity causing damage to the industrial plant itself and the surrounding buildings especially in highly urbanized areas and in extreme situations even generate loss of life. It is, therefore, necessary to carry out detailed studies of seismicity occurred in areas of geo-resources exploitation to expand knowledge of this phenomenon and develop safety protocols to prevent and mitigate the risks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.