The Saccharomyces cerevisiae PDR3 gene, located near the centromere of chromosome II, has been completely sequenced and characterised. Mutations pdr3-1 and pdr3-2, which confer resistance to several antibiotics can be complemented by a wild-type allele of the PDR3 gene. The sequence of the wild-type PDR3 gene revealed the presence of a long open reading frame capable of encoding a 976-amino acid protein. The protein contains a single Zn(II)2Cys6 binuclear-type zinc finger homologous to the DNA-binding motifs of other transcriptional activators from lower eukaryotes. Evidence that the PDR3 protein is a transcriptional activator was provided by demonstrating that DNA-bound LexA-PDR3 fusion proteins stimulate expression of a nearby promoter containing LexA binding sites. The use of LexA-PDR3 fusions revealed that the protein contains two activation domains, one localised near the N-terminal, cysteine-rich domain and the other localised at the C-terminus. The salient feature of the PDR3 protein is its similarity to the protein coded by PDR1, a gene responsible for pleiotropic drug resistance. The two proteins show 36% amino acid identity over their entire length and their zinc finger DNA-binding domains are highly conserved. The fact that the absence of both PDR1 and PDR3 (simultaneous disruption of the two genes) enhances multidrug sensitivity strongly suggests that the two transcriptional factors have closely related functions.
Mutations at the yeast PDR1 transcriptional regulator locus are responsible for overexpression of the three ABC transporter genes PDR5, SNQ2 and YOR1, associated with the appearance of multiple drug resistance. The nucleotide sequences of 13 alleles of PDR1, comprising 6 multidrug resistance mutants, 1 intragenic suppressor and 6 wild types, have been determined. Single amino acid substitutions were shown to result from the mutations pdr1-2 (M308I), pdr1-3 (F815S), pdr1-6 (K302Q), pdr1-7 (P298A) and pdr1-8 (L1036 W), whereas the intragenic suppressor mutant pdr1-100 is deleted for the two amino acids L537 and A538. An isogenic series of strains was constructed containing the mutant alleles pdr1-3, pdr1-6 and pdr1-8 integrated into the genome. We found that the levels of resistance to cycloheximide, oligomycin, 4-nitroquinoline-N-oxide and ketoconazole were increased in all three mutants. The increase was more pronounced in the pdr1-3 than in the pdr1-6 and pdr1-8 mutants. Studies of the activity of the promoters of the ABC genes PDR5, SNQ2 and YOR1 demonstrated that the combination of the PDR5 promoter and the pdr1-3 mutation resulted in the highest level of promoter induction. Concomitantly, the level of PDR5 mRNA, of Pdr5p protein, and of its associated nucleoside triphosphatase activity, was strongly increased in the plasma membranes of the PDR1 mutants. Again, the pdr1-3 allele was associated with a stronger effect than the pdr1-8 and pdr1-6 alleles. The locations of the mutations in the PDR1 gene indicate that at least three different regions distributed throughout the Pdr1p transcription factor may be mutated to generate a Pdr1p with considerably increased transcriptional activation potency. These gain-of-function mutations support the concept, recently proposed, that in members of the large family of yeast Zn2Cys6 transcription factors a central inhibitory domain exists (delineated by the pdr1-7, pdr1-6 and pdr1-2 mutations). This domain may interact in a locked conformation with a putative, more C-terminally located inhibitory domain (mutated in pdr1-3), and with the putative activation domain (mutated in pdr1-8).
Gain-of-function mutations in the transcription factors Pdr1p and Pdr3p lead to the up-regulation of genes controlling plasma membrane properties. Pdr3p is involved in a retrograde response in which mitochondrial dysfunctions activate PDR5, a gene encoding an ABC membrane transporter. We carried out genome-wide analyses of the PDR3-controlled genes activated by the deletion of the mitochondrial DNA. We present evidence showing that PDR1 does not interfere with this PDR3 response. We also showed that the mitochondrially activated PDR3 response is highly sensitive to both yeast strain variations and carbon sources. These observations explain the apparent discrepancies in published studies and better describe the connections between the mitochondrial state and plasma membrane properties. ß
On the basis of functional and phylogenetic criteria, we have identified a total of 229 subfamilies and 111 singletons predicted to carry out transport or other membrane functions in Saccharomyces cerevisiae. We have extended the Transporter Classification (TC) and created a Membrane Classification (MC) for non-transporter membrane proteins. Using the preliminary phylogenetic digits X, Y, Z (for new families, subfamilies, and clusters, respectively), we allocated a five-digit number to 850 proteins predicted to contain more than two transmembrane domains. Compared with a previous TC of the yeast genome, we classified an additional set of 538 membrane proteins (transporters and non-transporters) and identified 111 novel phylogenetic subfamilies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.