A novel type of cyclic P,N-ligands, pyridyl containing phospholanes, has been synthesized in a moderate yield by the reaction of primary phosphines with 1,4-dichlorobutane in a superbasic medium. A series of homo tetranuclear octahedral Cu4I4L2, dinuclear tetrahedral Cu2I2L3, and dinuclear "head-to-tail" Cu2I2L2 luminescent complexes with these ligands were obtained. All the compounds were characterized using a range of spectroscopic and computational techniques, and in the case of some Cu4I4L2 and Cu2I2L3 complexes, by single crystal X-ray diffraction. The structural diversity of the obtained complexes was reflected in their photophysical properties: phosphorescence spectra of the compounds display emission in broad spectral range of 471-615 nm. TD-DFT computations allow the assignment of a single emission band around 550 nm for Cu2I2L3 complexes and 471 nm for Cu2I2L2 complex to a vertical triplet-singlet transition from a metal-to-ligand and halide-to-ligand charge-transfer (3)(M + X)LCT excited state, whereas a second band at around 600 nm in the spectra of octahedral Cu4I4L2 complexes was assigned predominantly to Cu4I4 cluster-centered ((3)CC) excited state.
Eight-membered cyclic functional bisphosphines, namely 1,5-di-aryl-3,7-di(2-pyridyl)-1,5-diaza-3,7-diphosphacyclooctanes (aryl=2-pyridyl, m-tolyl, p-tolyl, diphenylmethyl, benzyl, (R)-(+)-(α-methyl)benzyl), with 2-pyridyl substituents on the phosphorus atoms have been synthesized by condensation of 2-pyridylphosphine, formaldehyde, and the corresponding primary amine. The structures of some of these bisphosphines have been investigated by X-ray crystallography. The bisphosphines readily form neutral P,P-chelate complexes [(κ(2)-P,P-L)MCl2], cationic bis-P,P-chelate complexes [(κ(2)-P,P-L)2 M](2+), or a five-coordinate complex [(κ(2)-P,P-L)2 NiBr]Br. The electrochemical behavior of two of the nickel complexes, and their catalytic activities in electrochemical hydrogen evolution and hydrogen oxidation, including the fuel-cell test, have been studied.
Herein we report the synthesis of a stimuli-responsive binuclear AuIJI) complex based on the 1,5-bisIJptolyl)-3,7-bisIJpyridine-2-yl)-1,5-diaza-3,7-diphosphacyclooctane ligand, which is a novel template for the design of luminescent metal complexes. In the solid state, the complex obtained gives three different crystalline phases, which were characterized by XRD analysis. It was also found that the crystalline phases can be reversibly interconverted by recrystallization or solvent vapour treatment. The emission of these phases varies in the 500-535 nm range. Quite unexpectedly, the emission energy of these phases is mostly determined by the non-covalent interactions of the solvent molecules with the ligand environment, which have nearly no effect on the Au-Au interactions in the chromophoric centre. The complex obtained demonstrates thermo/solvatochromism to display greenish emission in a DCM matrix and blue emission in an acetone matrix at 77 K, in contrast to the blue emission of the phase containing a DCM molecule and greenish-yellow emission of the acetone solvate in a crystal cell at room temperature. The potentially important role of co-crystallized solvent molecules in the ligand-based emission of the complex obtained is supported by DFT calculations.
The unique L 2 Cu 6 I 6 complexes containing two Cu 3 I 3 units have been obtained via reaction of 1,5-diaza-3,7-diphosphacyclooctanes bearing ethylpyridyl substituents at phosphorus atoms with an excess of copper iodide. The structure of one of the complexes was confirmed by X-ray diffraction. It was shown that the complexes can exist in two crystalline phases with different parameters of the unit cell, which were detected by the PXRD data analyses. The solvent-free crystalline phases of the complexes display rare solid-state white emission at room temperature, which is observed due to the presence of two broad bands in the emission spectra with maxima at 464 and 610 nm. Quantum chemical computations show that the high-energy band has 3 (M+X)LCT origin, whereas the low-energy band is interpreted as 3 CC. The quantum yields of white luminescence of complexes reach 15−20%.
A series of amido Ca and Yb(II) complexes LM[N(SiMe)](THF) (1Yb, 1-4Ca) coordinated by amidine-amidopyridinate ligands L were synthesized via a transamination reaction between proligands LH and bisamido complexes M[N(SiMe)](THF) (M = Yb, Ca). The reactions of Yb[N(SiMe)](THF) with proligands LH-LH containing CF and CHF fragments do not allow for preparing the target Yb(II) complexes, while the Ca analogues were synthesized in good yields. Complexes 1Yb and 1-4Ca were evaluated as precatalysts for hydrophosphination of styrene, p-substituted styrenes, α-Me-styrene, and 2,3-dimethylbutadiene with various primary and secondary phosphines (PhPH, 2,4,6-MeCHPH, 2-CNHPH, PhPH, CyPH). Complexes 1Yb, 1-4Ca performed high catalytic activities in styrene hydrophosphination with PhPH and PhPH and demonstrated high regioselectivity affording exclusively the anti-Markovnikov addition products. For primary PhPH the reactions (1:1 molar ratio of substrates) catalyzed by 1Yb, 1Ca, and 2Ca proved to be highly chemoselective affording the secondary phosphine Ph(PhCHCH)PH; however, complexes 3Ca and 4Ca led to the formation of both secondary and tertiary phosphines in 80:20 and 86:14 ratios. Styrene hydrophosphinations with 2,4,6-MeCHPH and 2-pyridylphosphine for all complexes 1Yb and 1-4Ca proceeded much more slowly compared to PhPH. Addition of 2-CNHPH to styrene catalyzed by complex 1Yb turned out to be non-regioselective and led to the formation of a mixture of Markovnikov and anti-Markovnikov addition products, while all Ca complexes enabled regioselective anti-Markovnikov addition. Complexes 1Ca and 1Yb containing catalytic centers featuring similar ionic radii performed different catalytic activity: the ytterbium analogue proved to be a more active catalyst for intermolecular hydrophosphination of styrene with CyPH, 2-CNHPH, and PhPH, but less active with sterically demanding 2,4,6-MeCHPH. Styrenes containing in p-position electron-donating groups (Me, tBu, OMe) performed with noticeably lower rates in the reactions with PhPH compared to styrene. Complexes 1Yb, 1Ca, 2Ca, 3Ca, and 4Ca enabled addition of PhPH toward the double C═C bond of α-Me-styrene, and the reaction rate for this substrate is noticeably lower; however quantitative conversions were reached in ∼40 h. Complexes 1Ca and 2Ca promoted 1,2-addition of PhPH to 2,3-dimethyl butadiene with excellent regio- and chemoselectivity to afford linear secondary phosphines. Hydrophosphination of inert 1-nonene with PhPH with 40% conversion becomes possible due to the application of complex 2Ca (40 h, 70 °C). The rate law for the hydrophosphination of styrene with PhPH catalyzed by 1Ca was found to agree with the idealized equation: v = k[styrene][1Ca].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.