The current version of the Human Disease Ontology (DO) (http://www.disease-ontology.org) database expands the utility of the ontology for the examination and comparison of genetic variation, phenotype, protein, drug and epitope data through the lens of human disease. DO is a biomedical resource of standardized common and rare disease concepts with stable identifiers organized by disease etiology. The content of DO has had 192 revisions since 2012, including the addition of 760 terms. Thirty-two percent of all terms now include definitions. DO has expanded the number and diversity of research communities and community members by 50+ during the past two years. These community members actively submit term requests, coordinate biomedical resource disease representation and provide expert curation guidance. Since the DO 2012 NAR paper, there have been hundreds of term requests and a steady increase in the number of DO listserv members, twitter followers and DO website usage. DO is moving to a multi-editor model utilizing Protégé to curate DO in web ontology language. This will enable closer collaboration with the Human Phenotype Ontology, EBI's Ontology Working Group, Mouse Genome Informatics and the Monarch Initiative among others, and enhance DO's current asserted view and multiple inferred views through reasoning.
The Human Disease Ontology (DO) (http://www.disease-ontology.org), database has undergone significant expansion in the past three years. The DO disease classification includes specific formal semantic rules to express meaningful disease models and has expanded from a single asserted classification to include multiple-inferred mechanistic disease classifications, thus providing novel perspectives on related diseases. Expansion of disease terms, alternative anatomy, cell type and genetic disease classifications and workflow automation highlight the updates for the DO since 2015. The enhanced breadth and depth of the DO’s knowledgebase has expanded the DO’s utility for exploring the multi-etiology of human disease, thus improving the capture and communication of health-related data across biomedical databases, bioinformatics tools, genomic and cancer resources and demonstrated by a 6.6× growth in DO’s user community since 2015. The DO’s continual integration of human disease knowledge, evidenced by the more than 200 SVN/GitHub releases/revisions, since previously reported in our DO 2015 NAR paper, includes the addition of 2650 new disease terms, a 30% increase of textual definitions, and an expanding suite of disease classification hierarchies constructed through defined logical axioms.
Wikidata is a community-maintained knowledge base that has been assembled from repositories in the fields of genomics, proteomics, genetic variants, pathways, chemical compounds, and diseases, and that adheres to the FAIR principles of findability, accessibility, interoperability and reusability. Here we describe the breadth and depth of the biomedical knowledge contained within Wikidata, and discuss the open-source tools we have built to add information to Wikidata and to synchronize it with source databases. We also demonstrate several use cases for Wikidata, including the crowdsourced curation of biomedical ontologies, phenotype-based diagnosis of disease, and drug repurposing.
Arthropod borne diseases cause significant human morbidity and mortality and, therefore, efficient measures to control transmission of the disease agents would have great impact on human health. One strategy to achieve this goal is based on the manipulation of bacterial symbionts of vectors. Bacteria of the Gram-negative, acetic acid bacterium genus Asaia have been found to be stably associated with larvae and adults of the Southeast Asian malaria vector Anopheles stephensi, dominating the microbiota of the mosquito. We show here that after the infection of Anopheles gambiae larvae with Asaia the bacteria were stably associated with the mosquitoes, becoming part of the microflora of the midgut and remaining there for the duration of the life cycle. Moreover they were passed on to the next generation through vertical transmission. Additionally, we show that there is an increase in the developmental rate when additional bacteria are introduced into the organism which leads us to the conclusion that Asaia plays a yet undetermined crucial role during the larval stages. Our microarray analysis showed that the larval genes that are mostly affected are involved in cuticle formation, and include mainly members of the CPR gene family.
The Evidence and Conclusion Ontology (ECO) contains terms (classes) that describe types of evidence and assertion methods. ECO terms are used in the process of biocuration to capture the evidence that supports biological assertions (e.g. gene product X has function Y as supported by evidence Z). Capture of this information allows tracking of annotation provenance, establishment of quality control measures and query of evidence. ECO contains over 1500 terms and is in use by many leading biological resources including the Gene Ontology, UniProt and several model organism databases. ECO is continually being expanded and revised based on the needs of the biocuration community. The ontology is freely available for download from GitHub (https://github.com/evidenceontology/) or the project’s website (http://evidenceontology.org/). Users can request new terms or changes to existing terms through the project’s GitHub site. ECO is released into the public domain under CC0 1.0 Universal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.