The brain distribution and functional role of glial P2X7 receptors are broader and more complex than initially anticipated. We characterized P2X7 receptors from cerebellar astrocytes at the molecular, immunocytochemical, biophysical, and cell physiologic levels. Mouse cerebellar astrocytes in culture express mRNA coding for P2X7 receptors, which is translated into P2X7 receptor protein as proven by Western blot analysis and immunocytochemistry. Fura-2 imaging showed cytosolic calcium responses to ATP and the synthetic analog 39-O-(4-benzoyl)benzoyl-ATP (BzATP) exhibited two components, namely an initial transient and metabotropic component followed by a sustained one that depended on extracellular calcium. This latter component, which was absent in astrocytes from P2X7 receptor knockout mice (P2X7 KO), was modulated by extracellular Mg 21, and was sensitive to Brilliant Blue G (BBG) and 3-(5-(2,3-dichlorophenyl)-1H-tetrazol-1-yl)methyl pyridine (A438079) antagonism. BzATP also elicited inwardly directed nondesensitizing whole-cell ionic currents that were reduced by extracellular Mg 21 and P2X7 antagonists (BBG and calmidazolium). In contrast to that previously reported in rat cerebellar astrocytes, sustained BzATP application induced a gradual increase in membrane permeability to large cations, such as N-methyl-D-glucamine and 4-[3-methyl-2(3H)-benzoxazolylidene)-methyl]-1-[3-(triethylammonio)propyl]diiodide, which ultimately led to the death of mouse astrocytes. Cerebellar astrocyte cell death was prevented by BBG but not by calmidazolium, removal of extracellular calcium, or treatment with the caspase-3 inhibitor, benzyloxycarbonyl-Asp(OMe)-Glu(OMe)-Val-Asp(OMe)-fluoromethylketone, thus suggesting a necrotictype mechanism of cell death. Since this cellular response was not observed in astrocytes from P2X7 KO mice, this study suggests that stimulation of P2X7 receptor may convey a cell death signal to cerebellar astrocytes in a species-specific manner.
Macrophages are innate immune cells with a dynamic range of reversible activation states including the classical pro-inflammatory (M1) and alternative anti-inflammatory (M2) states. Deciphering how macrophages regulate their transition from one state to the other is key for a deeper understanding of inflammatory diseases and relevant therapies. Common regulatory motifs reported for macrophage transitions, such as positive or double-negative feedback loops, exhibit a switchlike behavior, suggesting the bistability of the system. In this review, we explore the evidence for multistability (including bistability) in macrophage activation pathways at four molecular levels. First, a decision-making module in signal transduction includes mutual inhibitory interactions between M1 (STAT1, NF-KB/p50-p65) and M2 (STAT3, NF-KB/p50-p50) signaling pathways. Second, a switchlike behavior at the gene expression level includes complex network motifs of transcription factors and miRNAs. Third, these changes impact metabolic gene expression, leading to switches in energy production, NADPH and ROS production, TCA cycle functionality, biosynthesis, and nitrogen metabolism. Fourth, metabolic changes are monitored by metabolic sensors coupled to AMPK and mTOR activity to provide stability by maintaining signals promoting M1 or M2 activation. In conclusion, we identify bistability hubs as promising therapeutic targets for reverting or blocking macrophage transitions through modulation of the metabolic environment.
Macrophages are essential innate immune cells characterized by a high diversity and plasticity. In vitro, their full dynamic range of activation profiles include the classical pro-inflammatory (M1) and the alternative anti-inflammatory (M2) program. Bistability usually arises in biological systems that contain a positive-feedback loop or a mutually inhibitory, double-negative-feedback loop, which are common regulatory motifs reported for macrophage transitions from one activation state to the other one. This switch-like behavior of macrophage is observed at four different levels. First, a decision-making module in signal transduction includes mutual inhibitory interactions between M1 (STAT1 and NF-KB/p50-p65) and M2 (STAT3 and NF-KB/p50-p50) signaling pathways. Second, a switch-like behavior at the gene expression level includes complex network motifs of transcription factors and miRNAs. Third, those changes impact metabolic gene expression leading to several switches in energy production, NADPH and ROS production, TCA cycle functionality, biosynthesis and nitrogen metabolism. Fourth, metabolic changes are monitored by specialized metabolic sensors coupled to AMPK and mTOR activity to provide stability by maintaining the signals to promote either M1 or M2 activation. The targeting of robust molecular switches has the potential to treat a broad range of widespread diseases such as sepsis, cancer or chronic inflammatory diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.