We analyze an optimal boundary control problem for heat convection equations in a three-dimensional domain, with mixed boundary conditions. We prove the existence of optimal solutions, by considering boundary controls for the velocity vector and the temperature. The analyzed optimal control problem includes the minimization of a Lebesgue norm between the velocity and some desired field, as well as the temperature and some desired temperature. By using the Lagrange multipliers theorem we derive an optimality system. We also give a second-order sufficient condition.
Abstract. This paper provides sufficient conditions for the existence of nonnegative generalized doubly stochastic matrices with prescribed elementary divisors. These results improve previous results and the constructive nature of their proofs allows for the computation of a solution matrix.In particular, this paper shows how to transform a generalized stochastic matrix into a nonnegative generalized doubly stochastic matrix, at the expense of increasing the Perron eigenvalue, but keeping other elementary divisors unchanged. Under certain restrictions, nonnegative generalized doubly stochastic matrices can be constructed, with spectrum Λ = {λ 1 , λ 2 , . . . , λn} for each Jordan canonical form associated with Λ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.