BackgroundAdvanced prehospital interventions for severe brain injury remains controversial. No previous randomised trial has been conducted to evaluate additional physician intervention compared with paramedic only care.MethodsParticipants in this prospective, randomised controlled trial were adult patients with blunt trauma with either a scene GCS score <9 (original definition), or GCS<13 and an Abbreviated Injury Scale score for the head region ≥3 (modified definition). Patients were randomised to either standard ground paramedic treatment or standard treatment plus a physician arriving by helicopter. Patients were evaluated by 30-day mortality and 6-month Glasgow Outcome Scale (GOS) scores. Due to high non-compliance rates, both intention-to-treat and as-treated analyses were preplanned.Results375 patients met the original definition, of which 197 was allocated to physician care. Differences in the 6-month GOS scores were not significant on intention-to-treat analysis (OR 1.11, 95% CI 0.74 to 1.66, p=0.62) nor was the 30-day mortality (OR 0.91, 95% CI 0.60 to 1.38, p=0.66). As-treated analysis showed a 16% reduction in 30-day mortality in those receiving additional physician care; 60/195 (29%) versus 81/180 (45%), p<0.01, Number needed to treat =6. 338 patients met the modified definition, of which 182 were allocated to physician care. The 6-month GOS scores were not significantly different on intention-to-treat analysis (OR 1.14, 95% CI 0.73 to 1.75, p=0.56) nor was the 30-day mortality (OR 1.05, 95% CI 0.66 to 1.66, p=0.84). As-treated analyses were also not significantly different.ConclusionsThis trial suggests a potential mortality reduction in patients with blunt trauma with GCS<9 receiving additional physician care (original definition only). Confirmatory studies which also address non-compliance issues are needed.Trial registration numberNCT00112398.
BackgroundIt has been suggested that prehospital care teams that can provide advanced prehospital interventions may decrease the transit time through the ED to CT scan and subsequent surgery. This study is an exploratory analysis of data from the Head Injury Retrieval Trial (HIRT) examining the relationship between prehospital team type and time intervals during the prehospital and ED phases of management.MethodsThree prehospital care models were compared; road paramedics, and two physician staffed Helicopter Emergency Medical Services (HEMS) - HIRT HEMS and the Greater Sydney Area (GSA) HEMS. Data on prehospital and ED time intervals for patients who were randomised into the HIRT were extracted from the trial database. Additionally, data on interventions at the scene and in the ED, plus prehospital entrapment rate was also extracted. Subgroups of patients that were not trapped or who were intubated at the scene were also specifically examined.ResultsA total of 3125 incidents were randomised in the trial yielding 505 cases with significant injury that were treated by road paramedics, 302 patients treated by the HIRT HEMS and 45 patients treated by GSA HEMS. The total time from emergency call to CT scan was non-significantly faster in the HIRT HEMS group compared with road paramedics (medians of 1.9 hours vs. 2.1 hours P = 0.43) but the rate of prehospital intubation was 41% higher in the HIRT HEMS group (46.4% vs. 5.3% P < 0.001). Most time intervals for the GSA HEMS were significantly longer with a regression analysis indicating that GSA HEMS scene times were 13 (95% CI, 7–18) minutes longer than the HIRT HEMS independent of injury severity, entrapment or interventions performed on scene.ConclusionThis study suggests that well-rehearsed and efficient interventions carried out on-scene, by a highly trained physician and paramedic team can allow earlier critical care treatment of severely injured patients without increasing the time elapsed between injury and hospital-based intervention. There is also indication that role specialisation improves time intervals in physician staffed HEMS which should be confirmed with purpose designed trials.
A primary aim of managing critically injured patients is the maintenance of perfusion to vital organs, particularly the brain.Discussion of traumatic brain injury (TBI) management frequently focuses on hospital care but the pre-hospital phase, even in urban areas of Australia, is often more than one hour. Delivery of nutrients to the brain is no less vital during this period than during the hospital admission to prevent the deleterious effects of secondary brain injury.TBI is a significant cause of morbidity and mortality with younger age groups most commonly affected. In TBI survivors, almost 50% have permanent deficits causing at least moderate disability. 1 Such disability can be present in up to 43% of patients up to 20 years after their injury. 1 With estimates that patients suffering TBI add $8.6 billion per year to the costs of health care in Australia, there is a clear rationale for pursuing optimal TBI management. 2
The original version of this article unfortunately contained a mistake. The presentation of Tables 3, 4 and 5 were incorrect. The corrected Tables 3, 4 and 5 are given below.The original article has been corrected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.