W e model concept testing in new product development as a search for the most profitable solution to a design problem. When allocating resources, developers must balance the cost of testing multiple designs against the potential profits that may result. We propose extreme-value theory as a mathematical abstraction of the concept-testing process. We investigate the trade-off between the benefits and costs of parallel concept testing and derive closed-form solutions for the case of profits that follow extreme-value distributions. We analyze the roles of the scale and tail-shape parameters of the profit distribution as well as the cost of testing in determining the optimal number of tests and total budget for the concept phase of NPD. Using an example, we illustrate how to estimate and interpret the scale and tail-shape parameters. We find that the impact of declining concept-testing costs on expected profits, the number of concepts tested, and total spending depend on the scale/cost ratio and tail-shape parameter of the profit distribution.
We gratefully acknowledge the contribution of Robert M. Freund who proposed the use of the analytic center and approximating ellipsoids and gave us detailed advice on the application of these methods. This research was supported by the Sloan School of Management and the Center for Innovation in Product Development at M.I.T. This paper may be downloaded from http://mitsloan.mit.edu/vc. That website also contains (1) open source code to implement the methods described in this paper, (2) open source code for the simulations described in this paper, (3) demonstrations of web-based questionnaires based on the methods in this paper, and (4) related papers on web-based interviewing methods. All authors contributed fully and synergistically to this paper. We wish to thank Limor Weisberg for creating the graphics in this paper. This paper has benefited from presentations at the CIPD Spring Research Review, the Epoch Foundation Workshop, the MIT ILP Symposium on "Managing Corporate Innovation," the MIT Marketing Workshop, the MSI Young Scholars Conference, and the Stanford Marketing Workshop. Fast Polyhedral Adaptive Conjoint Estimation AbstractWeb-based customer panels and web-based multimedia capabilities offer the potential to get information from customers rapidly and iteratively based on virtual product profiles. However, web-based respondents are impatient and wear out more quickly. At the same time, in commercial applications, conjoint analysis is being used to screen large numbers of product features. Both of these trends are leading to a demand for conjoint analysis methods that provide reasonable estimates with fewer questions in problems involving many parameters.In this paper we propose and test new adaptive conjoint analysis methods that attempt to reduce respondent burden while simultaneously improving accuracy. We draw on recent "interior-point" developments in mathematical programming which enable us to quickly select those questions that narrow the range of feasible partworths as fast as possible. We then use recent centrality concepts (the analytic center) to estimate partworths. These methods are efficient, run with no noticeable delay in web-based questionnaires, and have the potential to provide estimates of the partworths with fewer questions than extant methods.After introducing these "polyhedral" algorithms we implement one such algorithm and test it with Monte Carlo simulation against benchmarks such as efficient (fixed) designs and Adaptive Conjoint Analysis (ACA). While no method dominates in all situations, the polyhedral algorithm appears to hold significant potential when (a) profile comparisons are more accurate than the self-explicated importance measures used in ACA, (b) when respondent wear out is a concern, and (c) when the product development and marketing teams wish to screen many features quickly. We also test a hybrid method that combines polyhedral question selection with ACA estimation and show that it, too, has the potential to improve predictions in many contexts. The algorithm w...
Greedoid languages provide a basis to infer best-fitting noncompensatory decision rules from full-rank conjoint data or partial-rank data such as consider-then-rank, consider-only, or choice data. Potential decision rules include elimination by aspects, acceptance by aspects, lexicographic by features, and a mixed-rule lexicographic by aspects (LBA) that nests the other rules. We provide a dynamic program that makes estimation practical for a moderately large numbers of aspects. We test greedoid methods with applications to SmartPhones (339 respondents, both full-rank and consider-then-rank data) and computers (201 respondents from Lenk et al. 1996). We compare LBA to two compensatory benchmarks: hierarchical Bayes ranked logit (HBRL) and LINMAP. For each benchmark, we consider an unconstrained model and a model constrained so that aspects are truly compensatory. For both data sets, LBA predicts (new task) holdouts at least as well as compensatory methods for the majority of the respondents. LBA's relative predictive ability increases (ranks and choices) if the task is full rank rather than consider then rank. LBA's relative predictive ability does not change if (1) we allow respondents to presort profiles, or (2) we increase the number of profiles in a consider-then-rank task from 16 to 32. We examine trade-offs between effort and accuracy for the type of task and the number of profiles.lexicography, noncompensatory decision rules, choice heuristics, optimization methods in marketing, conjoint analysis, product development, consideration sets
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.