The task of predicting the interactions between drugs and targets plays a key role in the process of drug discovery. There is a need to develop novel and efficient prediction approaches in order to avoid costly and laborious yet not-always-deterministic experiments to determine drug–target interactions (DTIs) by experiments alone. These approaches should be capable of identifying the potential DTIs in a timely manner. In this article, we describe the data required for the task of DTI prediction followed by a comprehensive catalog consisting of machine learning methods and databases, which have been proposed and utilized to predict DTIs. The advantages and disadvantages of each set of methods are also briefly discussed. Lastly, the challenges one may face in prediction of DTI using machine learning approaches are highlighted and we conclude by shedding some lights on important future research directions.
A central question in the era of 'big data' is what to do with the enormous amount of information. One possibility is to characterize it through statistics, e.g., averages, or classify it using machine learning, in order to understand the general structure of the overall data. The perspective in this paper is the opposite, namely that most of the value in the information in some applications is in the parts that deviate from the average, that are unusual, atypical. We define what we mean by 'atypical' in an axiomatic way as data that can be encoded with fewer bits in itself rather than using the code for the typical data. We show that this definition has good theoretical properties. We then develop an implementation based on universal source coding, and apply this to a number of real world data sets.
The aim of using atypicality is to extract small, rare, unusual and interesting pieces out of big data. This complements statistics about typical data to give insight into data. In order to find such “interesting” parts of data, universal approaches are required, since it is not known in advance what we are looking for. We therefore base the atypicality criterion on codelength. In a prior paper we developed the methodology for discrete-valued data, and the current paper extends this to real-valued data. This is done by using minimum description length (MDL). We develop the information-theoretic methodology for a number of “universal” signal processing models, and finally apply them to recorded hydrophone data and heart rate variability (HRV) signal.
Fibromyalgia is a medical condition characterized by widespread muscle pain and tenderness and is often accompanied by fatigue and alteration in sleep, mood, and memory. Poor sleep quality and fatigue, as prominent characteristics of fibromyalgia, have a direct impact on patient behavior and quality of life. As such, the detection of extreme cases of sleep quality and fatigue level is a prerequisite for any intervention that can improve sleep quality and reduce fatigue level for people with fibromyalgia and enhance their daytime functionality. In this study, we propose a new supervised machine learning method called Learning Using Concave and Convex Kernels (LUCCK). This method employs similarity functions whose convexity or concavity can be configured so as to determine a model for each feature separately, and then uses this information to reweight the importance of each feature proportionally during classification. The data used for this study was collected from patients with fibromyalgia and consisted of blood volume pulse (BVP), 3-axis accelerometer, temperature, and electrodermal activity (EDA), recorded by an Empatica E4 wristband over the courses of several days, as well as a self-reported survey. Experiments on this dataset demonstrate that the proposed machine learning method outperforms conventional machine learning approaches in detecting extreme cases of poor sleep and fatigue in people with fibromyalgia.
Pulse oximetry is a noninvasive and low-cost physiological monitor that measures blood oxygen levels. While the noninvasive nature of pulse oximetry is advantageous, the estimates of oxygen saturation generated by these devices are prone to motion artifacts and ambient noise, reducing the reliability of such estimations. Clinicians combat this by assessing the quality of oxygen saturation estimation by visual inspection of the photoplethysmograph (PPG), which represents changes in pulsatile blood volume and is also generated by the pulse oximeter. In this paper, we propose six morphological features that can be used to determine the quality of the PPG signal and generate a signal quality index. Unlike many similar studies, this approach uses machine learning and does not require a separate signal, such as ECG, for reference. Multiple algorithms were tested against 46 30-min PPG segments of patients with cardiovascular and respiratory conditions, including atrial fibrillation, hypoxia, acute heart failure, pneumonia, ARDS, and pulmonary embolism. These signals were independently annotated for signal quality by two clinicians, with the union of their annotations used as the ground-truth. Similar to any physiological signal recorded in a clinical setting, the utilized dataset is also unbalanced in favor of good quality segments. The experiments showed that a cost-sensitive Support Vector Machine (SVM) outperformed other tested methods and was robust to the unbalanced nature of the data. Though the proposed algorithm was tested on PPG signals, the methodology remains agnostic to the dataset used, and may be applied to any type of pulsatile physiological signal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.