The main function of the lung is to perform gas exchange while maintaining lung homeostasis despite environmental pathogenic and non-pathogenic elements contained in inhaled air. Resident cells must keep lung homeostasis and eliminate pathogens by inducing protective immune response and silently remove innocuous particles. Which lung cell type is crucial for this function is still subject to debate, with reports favoring either alveolar macrophages (AMs) or lung epithelial cells (ECs) including airway and alveolar ECs. AMs are the main immune cells in the lung in steady-state and their function is mainly to dampen inflammatory responses. In addition, they phagocytose inhaled particles and apoptotic cells and can initiate and resolve inflammatory responses to pathogens. Although AMs release a plethora of mediators that modulate immune responses, ECs also play an essential role as they are more than just a physical barrier. They produce anti-microbial peptides and can secrete a variety of mediators that can modulate immune responses and AM functions. Furthermore, ECs can maintain AMs in a quiescent state by expressing anti-inflammatory membrane proteins such as CD200. Thus, AMs and ECs are both very important to maintain lung homeostasis and have to coordinate their action to protect the organism against infection. Thus, AMs and lung ECs communicate with each other using different mechanisms including mediators, membrane glycoproteins and their receptors, gap junction channels, and extracellular vesicles. This review will revisit characteristics and functions of AMs and lung ECs as well as different communication mechanisms these cells utilize to maintain lung immune balance and response to pathogens. A better understanding of the cross-talk between AMs and lung ECs may help develop new therapeutic strategies for lung pathogenesis.
Increasing evidence suggests that alveolar macrophages (AM) are involved in asthma pathogenesis. To better understand the role that these cells play, we investigated the capacity of AM from allergy-resistant rat, Sprague Dawley (SD), to modulate airway hyperresponsiveness of allergy-susceptible rat, Brown Norway (BN). AM of ovalbumin (OVA)-sensitized BN rats were eliminated by intratracheal instillation of liposomes containing clodronate. AM from OVA-sensitized SD rats were transferred into AM-depleted BN rats 24 h before allergen challenge. Airway responsiveness to methacholine was measured the following day. Instillation of liposomes containing clodronate in BN rats eliminated 85% AM after 3 d compared with saline liposomes. Methacholine concentration needed to increase lung resistance by 200% (EC200RL) was significantly lower in OVA-challenged BN rats (27.9 +/- 2.8 mg/ml) compared with SD rats (63.9 +/- 8.6 mg/ml). However, when AM from SD rats were transferred into AM-depleted BN rats, airway responsiveness (64.0 +/- 11.3 mg/ml) was reduced to the level of naïve rats (54.4 +/- 3.7 mg/ml) in a dose-dependent manner. Interestingly, transfer of AM from BN rats into SD rats did not modulate airway responsiveness. To our knowledge, this is the first direct evidence showing that AM may protect against the development of airway hyperresponsiveness.
Histamine, a well-known inflammatory mediator, has been implicated in various immunoregulatory effects that are poorly understood. Thus, we tested the hypothesis that histamine inhibits the release of a proinflammatory cytokine, namely TNF, by stimulating the release of an anti-inflammatory cytokine, IL-10. Alveolar macrophages (AMs) from humans, Sprague Dawley rats, and the AM cell line, NR8383, were treated with different concentrations of histamine (10−5-10−7 M) for 2 h prior to their stimulation with suboptimal concentration of LPS (1 ng/ml) for 4 h. Histamine inhibited TNF release in a dose-dependent manner. This inhibition was mimicked by H2 and H3 receptor agonists, but not by H1 receptor agonist. Furthermore, we demonstrated the expression of H3 receptor mRNA in human AMs. Interestingly, treatment of AMs with anti-IL-10, anti-PGE2, or a NO synthase inhibitor (Nω-nitro-l-arginine methyl ester) before the addition of histamine abrogated the inhibitory effect of the latter on TNF release. Histamine treatment (10−5 M) increased the release of IL-10 from unstimulated (2.2-fold) and LPS-stimulated (1.7-fold) AMs. Unstimulated AMs, NR8383, express few copies of IL-10 mRNA, as tested by quantitative PCR, but expression of IL-10 was increased by 1.5-fold with histamine treatment. Moreover, the stimulation of IL-10 release by histamine was abrogated by pretreatment with anti-PGE2 or the NO synthase inhibitor, Nω-nitro-l-arginine methyl ester. Thus, histamine increases the synthesis and release of IL-10 from AMs through PGE2 and NO production. These results suggest that histamine may play an important role in the modulation of the cytokine network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.