The search for effective combination therapies for cancer has focused heavily on synergistic combinations because they exhibit enhanced therapeutic efficacy at lower doses. Although synergism is intuitively attractive, therapeutic success often depends on whether drug resistance develops. The impact of synergistic combinations (vs. antagonistic or additive combinations) on the process of drug-resistance evolution has not been investigated. In this study, we use a simplified computational model of cancer cell numbers in a population of drug-sensitive, singly-resistant, and fully-resistant cells to simulate the dynamics of resistance evolution in the presence of two-drug combinations. When we compared combination therapies administered at the same combination of effective doses, simulations showed synergistic combinations most effective at delaying onset of resistance. Paradoxically, when the therapies were compared using dose combinations with equal initial efficacy, antagonistic combinations were most successful at suppressing expansion of resistant subclones. These findings suggest that, although synergistic combinations could suppress resistance through early decimation of cell numbers (making them "proefficacy" strategies), they are inherently fragile toward the development of single resistance. In contrast, antagonistic combinations suppressed the clonal expansion of singly-resistant cells, making them "antiresistance" strategies. The distinction between synergism and antagonism was intrinsically connected to the distinction between offensive and defensive strategies, where offensive strategies inflicted early casualties and defensive strategies established protection against anticipated future threats. Our findings question the exclusive focus on synergistic combinations and motivate further consideration of nonsynergistic combinations for cancer therapy. Computational simulations show that if different combination therapies have similar initial efficacy in cancers, then nonsynergistic drug combinations are more likely than synergistic drug combinations to provide a long-term defense against the evolution of therapeutic resistance. .
Many evolutionary comparative methods seek to identify associations between phenotypic traits or between traits and genotypes, often with the goal of inferring potential functional relationships between them. Comparative genomics methods aimed at this goal measure the association between evolutionary changes at the genetic level with traits evolving convergently across phylogenetic lineages. However, these methods have complex statistical behaviors that are influenced by non-trivial and oftentimes unknown confounding factors. Consequently, using standard statistical analyses in interpreting the outputs of these methods leads to potentially inaccurate conclusions. Here, we introduce phylogenetic permulations, a novel statistical strategy that combines phylogenetic simulations and permutations to calculate accurate, unbiased p-values from phylogenetic methods. Permulations construct the null expectation for p-values from a given phylogenetic method by empirically generating null phenotypes. Subsequently, empirical p-values that capture the true statistical confidence given the correlation structure in the data are directly calculated based on the empirical null expectation. We examine the performance of permulation methods by analyzing both binary and continuous phenotypes, including marine, subterranean, and long-lived large-bodied mammal phenotypes. Our results reveal that permulations improve the statistical power of phylogenetic analyses and correctly calibrate statements of confidence in rejecting complex null distributions while maintaining or improving the enrichment of known functions related to the phenotype. We also find that permulations refine pathway enrichment analyses by correcting for non-independence in gene ranks. Our results demonstrate that permulations are a powerful tool for improving statistical confidence in the conclusions of phylogenetic analysis when the parametric null is unknown.
The wealth of high-quality genomes for numerous species has motivated many investigations into the genetic underpinnings of phenotypes. Comparative genomics methods approach this task by identifying convergent shifts at the genetic level that are associated with traits evolving convergently across independent lineages. However, these methods have complex statistical behaviors that are influenced by non-trivial and oftentimes unknown confounding factors. Consequently, using standard statistical analyses in interpreting the outputs of these methods leads to potentially inaccurate conclusions. Here, we introduce phylogenetic permulations, a novel statistical strategy that combines phylogenetic simulations and permutations to calculate accurate, unbiased p-values from phylogenetic methods. Permulations construct the null expectation for p-values from a given phylogenetic method by empirically generating null phenotypes. Subsequently, empirical p-values that capture the true statistical confidence given the correlation structure in the data are directly calculated based on the empirical null expectation. We examine the performance of permulation methods by analyzing both binary and continuous phenotypes, including marine, subterranean, and long-lived large-bodied mammal phenotypes. Our results reveal that permulations improve the statistical power of phylogenetic analyses and correctly calibrate statements of confidence in rejecting complex null distributions while maintaining or improving the enrichment of known functions related to the phenotype. We also find that permulations refine pathway enrichment analyses by correcting for non-independence in gene ranks. Our results demonstrate that permulations are a powerful tool for improving statistical confidence in the conclusions of phylogenetic analysis when the parametric null is unknown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.