Bipolar affective disorder (BPAD) is suspected to arise in part from malfunctions of the circadian system, a system that enables adaptation to a daily and seasonally cycling environment. Genetic variations altering functions of genes involved with the input to the circadian clock, in the molecular feedback loops constituting the circadian oscillatory mechanism itself, or in the regulatory output systems could influence BPAD as a result. Several human circadian system genes have been identified and localized recently, and a comparison with linkage hotspots for BPAD has revealed some correspondences. We have assessed evidence for linkage and association involving polymorphisms in 10 circadian clock genes (ARNTL, CLOCK, CRY2, CSNK1epsilon, DBP, GSK3beta, NPAS2, PER1, PER2, and PER3) to BPAD. Linkage analysis in 52 affected families showed suggestive evidence for linkage to CSNK1epsilon. This finding was not substantiated in the association study. Fifty-two SNPs in 10 clock genes were genotyped in 185 parent proband triads. Single SNP TDT analyses showed no evidence for association to BPAD. However, more powerful haplotype analyses suggest two candidates deserving further studies. Haplotypes in ARNTL and PER3 were found to be significantly associated with BPAD via single-gene permutation tests (PG = 0.025 and 0.008, respectively). The most suggestive haplotypes in PER3 showed a Bonferroni-corrected P-value of PGC = 0.07. These two genes have previously been implicated in circadian rhythm sleep disorders and affective disorders. With correction for the number of genes considered and tests conducted, these data do not provide statistically significant evidence for association. However, the trends for ARNTL and PER3 are suggestive of their involvement in bipolar disorder and warrant further study in a larger sample.
The pore-forming alpha-subunit, Kv1.5, forms functional voltage-gated K(+) (Kv) channels in human pulmonary artery smooth muscle cells (PASMC) and plays an important role in regulating membrane potential, vascular tone, and PASMC proliferation and apoptosis. Inhibited Kv channel expression and function have been implicated in PASMC from patients with idiopathic pulmonary arterial hypertension (IPAH). Here, we report that overexpression of the Kv1.5 channel gene (KCNA5) in human PASMC and other cell lines produced a 15-pS single channel current and a large whole cell current that was sensitive to 4-aminopyridine. Extracellular application of nicotine, bepridil, correolide, and endothelin-1 (ET-1) all significantly and reversibly reduced the Kv1.5 currents, while nicotine and bepridil also accelerated the inactivation kinetics of the currents. Furthermore, we sequenced KCNA5 from IPAH patients and identified 17 single-nucleotide polymorphisms (SNPs); 7 are novel SNPs. There are 12 SNPs in the upstream 5' region, 2 of which may alter transcription factor binding sites in the promoter, 2 nonsynonymous SNPs in the coding region, 2 SNPs in the 3'-untranslated region, and 1 SNP in the 3'-flanking region. Two SNPs may correlate with the nitric oxide-mediated decrease in pulmonary arterial pressure. Allele frequency of two other SNPs in patients with a history of fenfluramine and phentermine use was significantly different from patients who have never taken the anorexigens. These results suggest that 1) Kv1.5 channels are modulated by various agonists (e.g., nicotine and ET-1); 2) novel SNPs in KCNA5 are present in IPAH patients; and 3) SNPs in the promoter and translated regions of KCNA5 may underlie the altered expression and/or function of Kv1.5 channels in PASMC from IPAH patients.
A proper rate of programmed cell death or apoptosis is required to maintain normal tissue homeostasis. In disease states such as cancer and some forms of hypertension, apoptosis is blocked, resulting in hyperplasia. In neurodegenerative diseases, uncontrolled apoptosis leads to loss of brain tissue. The flow of ions in and out of the cell and its intracellular organelles is becoming increasingly linked to the generation of many of these diseased states. This review focuses on the transport of K(+) across the cell membrane and that of the mitochondria via integral K(+)-permeable channels. We describe the different types of K(+) channels that have been identified, and investigate the roles they play in controlling the different phases of apoptosis: early cell shrinkage, cytochrome c release, caspase activation, and DNA fragmentation. Attention is also given to K(+) channels on the inner mitochondrial membrane, whose activity may underlie anti- or pro-apoptotic mechanisms in neurons and cardiomyocytes.
Maintaining the proper balance between cell apoptosis and proliferation is required for normal tissue homeostasis; when this balance is disrupted, disease such as pulmonary arterial hypertension (PAH) can result. Activity of K+ channels plays a major role in regulating the pulmonary artery smooth muscle cell (PASMC) population in the pulmonary vasculature, as they are involved in cell apoptosis, survival and proliferation. PASMCs from PAH patients demonstrate many cellular abnormalities linked to K+ channels, including decreased K+ current, downregulated expression of various K+ channels, and inhibited apoptosis. K+ is the major intracellular cation, and the K+ current is a major determinant of cell volume. Apoptotic volume decrease (AVD), an early hallmark and prerequisite of programmed cell death, is characterized by K+ and Cl− efflux. In addition to its role in AVD, cytosolic K+ can be inhibitory toward endogenous caspases and nucleases and can suppress mitochondrial cytochrome c release. In PASMC, K+ channel activation accelerates AVD and enhances apoptosis, while K+ channel inhibition decelerates AVD and inhibits apoptosis. Finally, inhibition of K+ channels, by increasing cytosolic [Ca2+] as a result of membrane depolarization‐mediated opening of voltage‐dependent Ca2+ channels, leads to PASMC contraction and proliferation. The goals of this review are twofold: (1) to elucidate the role of K+ ions and K+ channels in the proliferation and apoptosis of PASMC, with an emphasis on abnormal cell growth in human and animal models of PAH, and (2) to elaborate upon the targeting of K+ flux pathways for pharmacological treatment of pulmonary vascular disease. British Journal of Pharmacology (2008) 153, S99–S111; doi:; published online 17 December 2007
Acute hypoxia causes pulmonary vasoconstriction in part by inhibiting voltage-gated K(+) (Kv) channel activity in pulmonary artery smooth muscle cells (PASMC). The hypoxia-mediated decrease in Kv currents [I(K(V))] is selective to PASMC; hypoxia has little effect on I(K(V)) in mesenteric artery smooth muscle cells (MASMC). Functional Kv channels are homo- and/or heterotetramers of pore-forming alpha-subunits and regulatory beta-subunits. KCNA5 is a Kv channel alpha-subunit that forms functional Kv channels in PASMC and regulates resting membrane potential. We have shown that acute hypoxia selectively inhibits I(K(V)) through KCNA5 channels in PASMC. Overexpression of the human KCNA5 gene increased I(K(V)) and caused membrane hyperpolarization in HEK-293, COS-7, and rat MASMC and PASMC. Acute hypoxia did not affect I(K(V)) in KCNA5-transfected HEK-293 and COS-7 cells. However, overexpression of KCNA5 in PASMC conferred its sensitivity to hypoxia. Reduction of Po(2) from 145 to 35 mmHg reduced I(K(V)) by approximately 40% in rat PASMC transfected with human KCNA5 but had no effect on I(K(V)) in KCNA5-transfected rat MASMC (or HEK and COS cells). These results indicate that KCNA5 is an important Kv channel that regulates resting membrane potential and that acute hypoxia selectively reduces KCNA5 channel activity in PASMC relative to MASMC and other cell types. Because Kv channels (including KCNA5) are ubiquitously expressed in PASMC and MASMC, the observation from this study indicates that a hypoxia-sensitive mechanism essential for inhibiting KCNA5 channel activity is exclusively present in PASMC. The divergent effect of hypoxia on I(K(V)) in PASMC and MASMC also may be due to different expression levels of KCNA5 channels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.