Timely and effective clinical decision-making for COVID-19 requires rapid identification of risk factors for disease outcomes. Our objective was to identify characteristics available immediately upon first clinical evaluation related COVID-19 mortality. We conducted a retrospective study of 8770 laboratory-confirmed cases of SARS-CoV-2 from a network of 53 facilities in New-York City. We analysed 3 classes of variables; demographic, clinical, and comorbid factors, in a two-tiered analysis that included traditional regression strategies and machine learning. COVID-19 mortality was 12.7%. Logistic regression identified older age (OR, 1.69 [95% CI 1.66–1.92]), male sex (OR, 1.57 [95% CI 1.30–1.90]), higher BMI (OR, 1.03 [95% CI 1.102–1.05]), higher heart rate (OR, 1.01 [95% CI 1.00–1.01]), higher respiratory rate (OR, 1.05 [95% CI 1.03–1.07]), lower oxygen saturation (OR, 0.94 [95% CI 0.93–0.96]), and chronic kidney disease (OR, 1.53 [95% CI 1.20–1.95]) were associated with COVID-19 mortality. Using gradient-boosting machine learning, these factors predicted COVID-19 related mortality (AUC = 0.86) following cross-validation in a training set. Immediate, objective and culturally generalizable measures accessible upon clinical presentation are effective predictors of COVID-19 outcome. These findings may inform rapid response strategies to optimize health care delivery in parts of the world who have not yet confronted this epidemic, as well as in those forecasting a possible second outbreak.
Processing eye-gaze information is a key step to human social interaction. Neuroimaging studies have shown that superior temporal sulcus (STS) is highly implicated in eye-gaze perception. In autism, a lack of preference for the eyes, as well as anatomo-functional abnormalities within the STS, has been described. To date, there are no experimental data in humans showing whether it is possible to interfere with eye-gaze processing by modulating STS neural activity. Here, we measured eye-gaze perception before and after inhibitory transcranial magnetic stimulation (TMS) applied over the posterior STS (pSTS) in young healthy volunteers. Eye-gaze processing, namely overt orienting toward the eyes, was measured using eye tracking during passive visualization of social movies. Inhibition of the right pSTS led participants to look less to the eyes of characters during visualization of social movies. Such effect was specific for the eyes and was not observed after inhibition of the left pSTS nor after placebo TMS. These results indicate for the first time that interfering with the right pSTS neural activity transitorily disrupts the behavior of orienting toward the eyes and thus indirectly gaze perception, a fundamental process for human social cognition. These results could open up new perspectives in therapeutic interventions in autism.
The predisposition, severity, and progression of many diseases differ between males and females. Sex-related differences in susceptibility to neurotoxicant exposures may provide insight into the cause of the observed discrepancy. Early adolescence, a period of substantial structural and functional brain changes, may present a critical window of vulnerability to environmental exposures. This study aimed to examine sex-specific associations between co-exposure to multiple metals and visuospatial memory in early adolescence. Manganese (Mn), lead (Pb), chromium (Cr), and copper (Cu) were measured in blood, urine, hair, nails, and saliva of 188 participants (88 girls; 10–14 years of age). Visuospatial memory skills were assessed using a computerized maze task, the virtual radial arm maze (VRAM). Using generalized weighted quantile sum regression, we investigated sex-specific associations between the combined effect of exposure to the metal mixture and visuospatial working memory and determined the contribution of each component to the outcome. The results suggest that sex moderates the association between the metal mixture and visuospatial learning for all outcomes measured. In girls, exposure was associated with slower visuospatial learning and driven by Mn and Cu. In boys, exposure was associated with faster visuospatial learning, and driven by Cr. These results suggest that (a) the effect of metal co-exposure on learning differs in magnitude, and in the direction between sexes, and (b) early adolescence may be a sensitive developmental period for metal exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.