Apocytochrome c, which in aqueous solution is largely unstructured, acquires a highly alpha-helical structure upon interaction with lipid. The alpha-helix content induced in apocytochrome c depends on the lipid system, and this folding process is driven by both electrostatic and hydrophobic lipid-protein interactions. The folding kinetic mechanism of apocytochrome c induced by zwitterionic micelles of lysophosphatidylcholine (L-PC), predominantly driven by hydrophobic lipid-protein interactions, was investigated by fluorescence stopped-flow measurements of Trp 59 and fluorescein-phosphatidylethanolamine-(FPE) labeled micelles, in combination with stopped-flow far-UV circular dichroism. It was found that formation of the alpha-helical structure of apocytochrome c precedes membrane insertion. The unfolded state in solution (U(W)) binds to the micelle surface in a helical conformation (I(S)) and is followed by insertion into the lipid micelle, i.e., formation of the final helical state H(L). Binding of apocytochrome c to the lipid micelle (U(W) --> I(S)) is concurrent with formation of a large fraction (75-100%, depending on lipid concentration) of the alpha-helical structure of the final lipid-inserted state H(L). The highly helical intermediate I(S) is formed on the time scale of 3-12 ms, depending on lipid concentration, and inserts into the lipid micelle (I(S) --> H(L)) in the time range of approximately 200 ms to >1 s, depending on lipid-to-protein ratio. The final lipid-inserted helical state H(L) in L-PC micelles has an alpha-helix content approximately 65% of that of cytochrome c in solution and has no compact stable tertiary structure as revealed by circular dichroism results.
Apocytochrome c (apocyt c), which in aqueous solution is largely unstructured, acquires an a-helical conformation upon association with lipid membranes. The extent of a-helix induced in apocyt c is lipiddependent and this folding process is driven by both electrostatic and hydrophobic lipid±protein interactions. The structural and dynamic properties of apocyt c in lipid membranes were investigated by attenuated total reflection Fourier transform infrared spectroscopy combined with amide H±D exchange kinetics. Apocyt c acquires a higher content of a-helical structure with negatively charged membranes than with zwitterionic ones. For all membranes studied here, the helices of these partially folded states of apocyt c have a preferential orientation perpendicular to the plane of the lipid membrane. The H±D exchange revealed that a small fraction of amide protons of apocyt c, possibly associated with a stable folded domain protected by the lipid, remained protected from exchange over 20 min. However, a large fraction of amide protons exchanged in less than 20 min, indicating that the helical states of apocyt c in lipid membranes are very dynamic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.