Objective: Abnormalities in haematological parameters have been noted in patients with thyroid diseases. Nevertheless, the exact mechanism of thyroid hormones' (THs) action on human haematopoiesis is still not entirely clear. Design: The influence of THs through TH receptors (TRa-1 and TRb-1) on haematopoiesis in patients with hypo-and hyperthyroidism was analysed. Methods: TR gene expression at the mRNA and protein levels in human CD34C -enriched haematopoietic progenitor cells (HPCs) obtained from the peripheral blood of patients with thyroid disorders and healthy volunteers was analysed. The cell populations were also investigated for clonogenic growth of granulocyte macrophage-colony forming units and erythrocyte-burst forming units (BFU-E). The level of apoptosis was determined by annexin V/propidium iodide staining and quantitative RT-PCR. Results: The studies revealed that hypo-and hyperthyroidism modify TR gene expression in HPCs in vivo. TH deficiency resulted in a decrease in total blood counts and clonogenic potential of BFU-E. In contrast, hyperthyroid patients presented increased clonogenic growth and BFU-E number and significantly higher expressions of cell cycle-regulating genes such as those for PCNA and cyclin D1. Finally, an increase in the frequency of apoptotic CD34C -enriched HPCs in hypo-and hyperthyroidism with a modulation of apoptosis-related genes was detected. Conclusions: The following conclusions were derived: i) TR expression in human haematopoietic cells depends on TH status, ii) both hypo-and hyperthyroidism significantly influence clonogenicity and induce apoptosis in CD34 C -enriched HPCs and iii) the molecular mechanism by which THs influence haematopoiesis might provide a basis for designing novel therapeutic interventions in thyroid diseases.
Abstract:The identification in murine bone marrow (BM) of very small embryonic-like (VSEL) stem cells, possessing several features of pluripotent stem cells, encouraged us to investigate if similar population of cells could be also isolated from the human umbilical cord blood (UCB). Here our approach to purify VSEL from human UCB is described by employing a two step isolation strategy based on i) hypotonic lysis of erythrocytes followed ii) by multi-parameter FACS sorting. Accordingly, first, erythrocytes are removed from the UCB samples by hypotonic ammonium chloride solution and next, the UCB mononuclear cells (UCB MNC) are stained with monoclonal antibodies against all hematopoietic lineages including the common leukocyte antigen CD45. The cells carrying these markers (lin + CD45 + ) are eliminated from the sort by electronic gating. At the same time the antibodies against CXCR4, CD34 and CD133 are employed as positive markers to enrich the UCB MNC for VSEL. This combined two step approach enables to purify VSEL stem cells, which are small and express mRNA for pluripotent stem cells (PSC) (Oct-4 and Nanog) and tissue-committed stem cells (TCSC) (Nkx2.5/Csx, VE-cadherin and GFAP) similarly to those isolated from the adult BM (3-5 μm cells with large nuclei).
The factories processing natural phosphates and apatites in Poland release into the atmosphere considerable amounts of fluorine compounds. Fluoride is known to accumulate in the hard tissues of animals and humans. This paper describes the determination of fluoride in mandibles of deer in the years 1982 and 1990. In recent years, the establishments have restricted their output and modernized the technology of phosphate fertilizer production. The fluoride content in jaws has decreased, particularly in those animals having their habitat in the vicinity of the two factories.
Neurotrophic factors regulate survival, development, and function of nervous tissue. They act via two different classes of receptors and activation of various signaling pathways in the target cells. Illumination of their physiological role in the maintenance of central nervous system homeostasis as well as regeneration of damaged tissue have ignited expectations to heal neurodegenerative diseases, including amyotrophic late-ral sclerosis and Parkinson disease. Advances in pharmaco-therapy, gene therapy, and stem cell biology have enabled development of novel therapies with application of regenerating cell transplantation. In the foreseeable future, it may lead to the establishment of safe and effective ways of treatment of these severe and currently incurable diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.