BackgroundALKBH proteins, the homologs of Escherichia coli AlkB dioxygenase, constitute a direct, single-protein repair system, protecting cellular DNA and RNA against the cytotoxic and mutagenic activity of alkylating agents, chemicals significantly contributing to tumor formation and used in cancer therapy. In silico analysis and in vivo studies have shown the existence of AlkB homologs in almost all organisms. Nine AlkB homologs (ALKBH1–8 and FTO) have been identified in humans. High ALKBH levels have been found to encourage tumor development, questioning the use of alkylating agents in chemotherapy. The aim of this work was to assign biological significance to multiple AlkB homologs by characterizing their activity in the repair of nucleic acids in prokaryotes and their subcellular localization in eukaryotes.Methodology and FindingsBioinformatic analysis of protein sequence databases identified 1943 AlkB sequences with eight new AlkB subfamilies. Since Cyanobacteria and Arabidopsis thaliana contain multiple AlkB homologs, they were selected as model organisms for in vivo research. Using E. coli alkB − mutant and plasmids expressing cyanobacterial AlkBs, we studied the repair of methyl methanesulfonate (MMS) and chloroacetaldehyde (CAA) induced lesions in ssDNA, ssRNA, and genomic DNA. On the basis of GFP fusions, we investigated the subcellular localization of ALKBHs in A. thaliana and established its mostly nucleo-cytoplasmic distribution. Some of the ALKBH proteins were found to change their localization upon MMS treatment.ConclusionsOur in vivo studies showed highly specific activity of cyanobacterial AlkB proteins towards lesions and nucleic acid type. Subcellular localization and translocation of ALKBHs in A. thaliana indicates a possible role for these proteins in the repair of alkyl lesions. We hypothesize that the multiplicity of ALKBHs is due to their involvement in the metabolism of nucleo-protein complexes; we find their repair by ALKBH proteins to be economical and effective alternative to degradation and de novo synthesis.
When DNA molecules are injected into Xenopus oocyte nuclei, they can recombine with each other. With bacteriophage lambda DNAs, it was shown that this recombination is stimulated greatly by introduction of double-strand breaks into the substrates and is dependent on homologous overlaps in the recombination interval. With plasmid DNAs it was shown that little or no recombination occurs between circular molecules but both intra-and intermolecular events take place very efficiently with linear molecules. As with the lambda substrates, homology was required to support recombination; no simple joining of ends was observed. Blockage of DNA ends with nonhomologous sequences interfered with recombination, indicating that ends are used directly to initiate homologous interactions. These observations are combined to evaluate possible models of recombination in the oocytes. Because each oocyte is capable of recombining nanogram quantities of linear DNA, this system offers exceptional opportunities for detailed molecular analysis of the recombination process in a higher organism.
Competition of commensal and probiotic bacteria with pathogens for adhesion and colonization is one of the important protective mechanisms of gastrointestinal tract. In this study, we examined the ability of Lactobacillus paracasei to inhibit the adhesion of pathogenic Salmonella enterica to human colon adenocarcinoma Caco-2 cells. Caco-2 cells were grown for 6 or 21 days to obtain nondifferentiated or well-differentiated cells, respectively. In adhesion experiments, bacteria were added to the cells for 2 or 4 hours. The number of attached bacteria was expressed as colony-forming units (CFUs), Caco-2 cells were counted in hematocytometer. Both bacterial strains used adhered better to well-differentiated than to nondifferentiated Caco-2 cells, however, the amount of Salmonella adhered to Caco-2 after 2 hours of contact was 12-fold higher in comparison to L. paracasei and almost 27-fold higher after 4 hours of contact. Two types of experiments were done: coincubation (both bacteria were added to Caco-2 cells simultaneously), and preincubation (L. paracasei was incubated with Caco-2 cells first, and then S. enterica was added). In coincubation experiment, the presence of L. paracasei decreased S. enterica adhesion by 4-fold and in preincubation experiment even 7-fold. Generally, Lactobacillus spent culture supernatants (SCSs) acted weaker as inhibitors of Salmonella adhesion in comparison to the whole L. paracasei culture in coincubation experiment. In conclusion, the displacement of pathogens by lactic acid bacteria and its secretions showed here depends on the time of bacteria-epithelial cell contact, and also on the stage of Caco-2 differentiation.
The nine identified human homologues of E. coli AlkB 2-oxoglutarate (2OG) and Fe(II)-dependent dioxygenase, ALKBH1-8 and FTO, display different substrate specificities and diverse biological functions. Here we discovered the combined overexpression of members of the ALKBH family in head and neck squamous cell carcinomas (HNSCC). We found direct correlation of ALKBH3 and FTO expression with primary HNSCC tumor size. We observed unidentified thus far cytoplasmic localization of ALKBH2 and 5 in HNSCC, suggesting abnormal role(s) of ALKBH proteins in cancer. Further, high expression of ALKBHs was observed not only in HNSCC, but also in several cancerous cell lines and silencing ALKBH expression in HeLa cancer cells resulted in dramatically decreased survival. Considering the discovered impact of high expression of ALKBH proteins on HNSCC development, we screened for ALKBH blockers among newly synthetized anthraquinone derivatives and demonstrated their potential to support standard anticancer therapy.
Linear molecules of pBR322 and closely related plasmid DNAs were injected into Xenopus oocyte nuclei. Such molecules were degraded unless their ends were recombined. Non-homologous ends were joined rarely, if at all, but measurable recombination was supported by homologous sequences of less than 10 base pairs (bp). The efficiency of recombination increased as the length and degree of homology improved, in the range of about 8-20 bp. The homologous sequences had to be very close to the original molecular ends (within about 20 bp); internal homologies, even when they included better matches, were never used. These observations are best accommodated by a model of recombination which envisions exonucleolytic resection to expose homologous sequences, followed by annealing of single-stranded tails, tidying up and sealing of the new joint. Some of the recombined plasmids had novel tetracycline resistance genes; their properties give some insight into the function of the tet gene product.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.