The 11p15 ICR1 epimutation is a major, specific cause of RSS exhibiting failure to thrive. We propose a clinical scoring system (including a BMI < -2 SDS), highly predictive of 11p15 ICR1 LOM, for the diagnosis of RSS.
BackgroundThe aim of this study was to analyze the response of selected components of the immune system in rowers to maximal physical exercise, and to verify if this response can be modulated by supplementation with spirulina (cyanobacterium Spirulina platensis).MethodThe double-blind study included 19 members of the Polish Rowing Team. The subjects were randomly assigned to the supplemented group (n = 10), receiving 1500 mg of spirulina extract for 6 weeks, or to the placebo group (n = 9). The participants performed a 2000-m test on a rowing ergometer at the beginning (1st examination) and at the end of the supplementation period (2nd examination). Blood samples were obtained from the antecubital vein prior to each exercise test, 1 min after completing the test, and after a 24-h recovery period. Subpopulations of T regulatory lymphocytes (Tregs) [CD4+/CD25+/CD127-], cytotoxic lymphocytes (CTLs) [CD8+/TCRαβ+], natural killer (NK) cells [CD3-/CD16+/CD56+] and TCRδγ-positive (Tδγ) cells were determined by means of flow cytometry.ResultsOn the 2nd examination, athletes from the supplemented group showed neither a post-exercise increase in Treg count nor a post-recovery decrease in Tδγ cell count (both observed in the placebo group), and presented with significantly lower values of Treg/CTL prior to and after the exercise. During the same examination, rowers from the placebo group showed a significant post-recovery increase in Treg/(NK + Tδγ + CTL) ratio, which was absent in the supplemented group.ConclusionThe results of this study imply that supplementation with spirulina extract may protect athletes against a deficit in immune function (especially, anti-infectious function) associated with strenuous exercise, and may cause a beneficial shift in “overtraining threshold” preventing a radical deterioration of immunity.
We investigated the direct effects of growth hormone (GH) replacement therapy (GH-RT) on hematopoiesis in children with GH deficiency (GHD) with the special emphasis on proliferation and cell cycle regulation. Peripheral blood (PB) was collected from sixty control individuals and forty GHD children before GH-RT and in 3rd and 6th month of GH-RT to measure hematological parameters and isolate CD34+-enriched hematopoietic progenitor cells (HPCs). Selected parameters of PB were analyzed by hematological analyzer. Moreover, collected HPCs were used to analyze GH receptor (GHR) and IGF1 expression, clonogenicity, and cell cycle activity. Finally, global gene expression profile of collected HPCs was analyzed using genome-wide RNA microarrays. GHD resulted in a decrease in several hematological parameters related to RBCs and significantly diminished clonogenicity of erythroid progenies. In contrast, GH-RT stimulated increases in clonogenic growth of erythroid lineage and RBC counts as well as significant up-regulation of cell cycle-propagating genes, including MAP2K1, cyclins D1/E1, PCNA, and IGF1. Likewise, GH-RT significantly modified GHR expression in isolated HPCs and augmented systemic IGF1 levels. Global gene expression analysis revealed significantly higher expression of genes associated with cell cycle, proliferation, and differentiation in HPCs from GH-treated subjects. (i) GH-RT significantly augments cell cycle progression in HPCs and increases clonogenicity of erythroid progenitors; (ii) GHR expression in HPCs is modulated by GH status; (iii) molecular mechanisms by which GH influences hematopoiesis might provide a basis for designing therapeutic interventions for hematological complications related to GHD.Electronic supplementary materialThe online version of this article (doi:10.1007/s12020-015-0591-0) contains supplementary material, which is available to authorized users.
Background The aim of this study was to analyze the response of selected components of the immune system in rowers to maximal physical exercise, and to verify if this response could be modulated by supplementation with L-theanine . Method The double-blind study included 20 members of the Polish Rowing Team. The subjects were randomly assigned to the supplemented group ( n = 10), receiving 150 mg of L-theanine extract for 6 weeks, or to the placebo group ( n = 10). The participants performed a 2000-m test on a rowing ergometer at the beginning (1st examination) and at the end of the supplementation period (2nd examination). Blood samples were obtained from the antecubital vein before each exercise test, 1 min after completing the test, and after a 24-h recovery. Subpopulations of T regulatory lymphocytes (Tregs) (CD4+/CD25+/CD127-), cytotoxic lymphocytes (CTLs) (CD8+/TCRαβ+), natural killer (NK) cells (CD3-/CD16+/CD56+) and TCRδγ-positive (Tδγ) cells were determined by means of flow cytometry. The levels of interleukin 2 (IL-2), interleukin 4 (IL-4), interleukin 10 (IL-10), interferon gamma (INF-ɤ) and total antioxidant capacity (TAC) were determined with commercially available diagnostic kits. Results Supplementation with L-theanine contributed to a significant post-exercise decrease in IL-10 concentration, which was reflected by higher values of IL-2 to IL-10 and IFN-γ to IL-10 ratios. Moreover, a significant post-recovery decrease in CTL count, Treg to NK and Treg to CTL ratios was observed in the supplemented group. Conclusion Despite the decrease in the number of some cytotoxic cells (CTLs) and an increase in the proportion of Tregs to CTLs, supplementation with LTE seems to exert a beneficial effect on a disrupted Th1/Th2 balance in elite athletes, as shown by the decrease in IL-10 concentration.
Introduction: The objective of this study was to analyse the effects of the first three years of treatment with recombinant human insulinlike growth factor 1 (rhIGF-1) in patients from the Polish population. Material and methods: Twenty-seven children (22 boys and five girls) aged 2.8 to 16.0 years old were qualified for treatment with rhIGF-1 (mecasermin) in different treatment centres, according to Polish criteria: body height below-3.0 SD and IGF-1 concentration below percentile 2.5 with normal growth hormone (GH) levels. Mecasermin initial dose was 40 μg/kg bw twice a day and was subsequently increased to an average of 100 μg/kg bw twice a day. Body height, height velocity, weight, body mass index (BMI), and adverse events were measured. Results: Mecasermin treatment resulted in a statistically significant increase in body height (1.45 ± 1.06 SD; p < 0.01) and height velocity in comparison with pre-treatment values. The biggest change in height velocity happened during the first year and diminished during subsequent years. Body weight and BMI also increased significantly after treatment (1.16 ± 0.76 SD and 0.86 ± 0.75 SD, respectively; p < 0.01). Eight patients reported adverse events. These were mild and temporary and did not require treatment modification except in two patients. Conclusions: Treatment with rhIGF-1 was effective and safe in Polish patients with primary IGF-1 deficiency. It had a clear beneficial effect on the height of the patients and significantly accelerated the height velocity, particularly in the first year of treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.