Coagulation factor VIII (FVIII) is a cofactor in the intrinsic pathway of blood coagulation for which deficiency results in the bleeding disorder hemophilia A. FVIII contains a domain structure of A1-A2-B-A3- C1-C2 of which the B domain is dispensable for procoagulant activity in vitro. In this report, we compare the properties of B-domain-deleted FVIII (residues 760 through 1639, designated LA-VIII) to wildtype recombinant FVIII. In transfected Chinese hamster ovary (CHO) cells, LA- VIII was expressed at a 10- to 20-fold greater level compared with wildtype FVIII. The specific activity of purified LA-VIII was indistinguishable from wild-type recombinant FVIII and both exhibited similar thrombin activation coefficients. Wildtype recombinant-derived FVIII and LA-VIII also displayed similar timecourses of thrombin activation and heavy chain cleavage. However, compared with wildtype recombinant-derived FVIII, the light chain of LA-VIII was cleaved fivefold more rapidly by thrombin. Addition of purified von Willebrand factor (vWF) did not alter the kinetics of thrombin cleavage or activation of either wildtype recombinant-derived FVIII or LA-VIII. The immunogenicity of LA-VIII was compared with wildtype FVIII in a novel model of neonatal tolerance induction in mice. The results did not detect any immunologic differences between wildtype FVIII and LA-VIII, suggesting that LA-VIII does not contain significant new epitopes that are absent in wildtype FVIII. LA-VIII was tolerated well on infusion into FVIII-deficient dogs and was able to correct the cuticle bleeding time similar to wildtype recombinant factor VIII. In vivo, LA-VIII was bound to canine vWF and exhibited a half-life similar to wildtype recombinant FVIII. These studies support that B-domain-deleted FVIII may be efficacious in treatment of hemophilia A in humans.
We have generated four high affinity monoclonal antibodies (MoAbs) to recombinant human erythropoietin (EPO). All four MoAbs immunoprecipitate radioiodinated native EPO, and the concentrations of MoAbs required for maximum binding range from 10 nmol/L to 100 nmol/L. Two MoAbs, designated Group I MoAbs, bind to an epitope within the N- terminal 20 amino acids of EPO and also immunoprecipitate sodium dodecyl sulfate (SDS)-denatured EPO. Two other MoAbs (Group II MoAbs) do not immunoprecipitate SDS-denatured EPO and do not bind to any of the eight endo C fragments of EPO. We first used murine erythroleukemia (MEL) cells to test the MoAbs for inhibition of EPO-receptor binding. MEL cells, although unresponsive to EPO, express 760 high affinity receptors for EPO per cell (Kd = 0.24 nmol/L). To assay our MoAbs, MEL cells were grown as monolayers on fibronectin-coated Petri dishes and incubated at 4 degrees C with radioiodinated EPO. Group I MoAbs do not inhibit binding of radioiodinated EPO to the MEL EPO-receptor, but Group II MoAbs do inhibit binding in a dose-dependent manner. We next examined the neutralization of EPO bioactivity by our MoAbs, using EPO- dependent cell line. Only Group II MoAbs inhibit a newly developed EPO- dependent cell growth, demonstrating that inhibition of EPO-receptor binding correlates with neutralization of EPO bioactivity.
Autologous membrane-bound IgG was isolated from a subpopulation of human red blood cells (RBC) with specific density greater than 1.110, by affinity chromatography of purified RBC membrane glycoprotein preparations using immobilized wheat germ agglutinin and immobilized anti-human immunoglobulin (Ig) as immunoabsorbents. The Ig-containing population thus obtained, when further separated by chromatography on Sephadex G-200 in the presence of chaotropic agents, yielded four peaks (Ia, Ib, II, and III). Double immunodiffusion revealed the presence of Ig in the first three peaks (IgM in peak Ia, IgA in Ib, and IgG in II) but not in peak III. Peak III was precipitated by the Ig-containing peaks (Ia, Ib, and II) in immunodiffusion assays, suggesting that the antigenic membrane determinants responsible for the binding of autologous Ig to senescent human RBC were contained in this peak (III). Peaks Ia, Ib and II precipitate purified asialoglycophorin; peak III was reactive with purified autoantibodies directed against asialoglycophorin. These results suggest that an age-related antigenic determinant(s) present on senescent human RBC is exposed by desialylation of the major sialoglycoprotein component of the RBC membrane.
Human erythrocytes (RBC) from whole blood were separated according to their specific densities by centrifugation on a polyvinyl-pyrrolidine- coated colloidal silica matrix (Percoll) into four major subpopulations. By indirect immunofluorescence assay, the most dense RBC subpopulation, with specific density greater than 1.110 g/ml (3%-5% of total RBC), was positive for membrane-bound immunoglobulin; the remaining, less dense subpopulations were negative. IgG was present on 85%-95%, IgM on 28%-32%, and IgA on 15%-20% of the RBC in the most dense population. When these immunoglobulins were eluted, radiolabeled, and used in binding studies with autologous RBC fractions subjected to thermal and/or enzymatic treatment, they reacted specifically with the less dense RBC subpopulations. These results suggest that previously cryptic antigens were revealed by the activity of neuraminidase on the plasma membranes of the treated RBC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.