Advanced remote sensing technologies have undoubtedly revolutionized palm oil industry management by bringing business and environmental benefits on a single platform. It is evident from the ongoing trend that remote sensing using satellite and aerial data is able to provide precise and quick information for huge palm oil plantation areas using high-resolution image processing, which is also recognized by the certification agencies, i.e., the Roundtable on Sustainable Palm Oil (RSPO) and ISCC (International Sustainability and Carbon Certification). A substantial improvement in the palm oil industry could be attained by utilizing the latest Geo-information tools and technologies equipped with AI (Artificial Intelligence) algorithms and image processing, which could help to identify illegal deforestation, tree count, tree height, and the early detection of diseased leaves. This paper reviews some of the latest technologies equipped with remote sensing, AI, and image processing for managing the palm oil plantation. This manuscript also highlights how the distress in the current palm oil industry could be handled by mentioning some of the improvised monitoring systems for palm oil plantation that could in turn increase the yield of palm oil. It is evident from the proposed review that the accuracy of AI algorithms for palm oil detection depends on various factors such as the quality of the training data, the design of the neural network, and the type of detection task. In general, AI models have achieved high accuracy in detecting palm oil tree images, with some studies reporting accuracy levels up to 91%. However, it is important to note that accuracy can still be affected by factors such as variations in lighting conditions and image resolution. Nonetheless, with any AI model, the accuracy of algorithms for palm oil tree detection can be improved by collecting more diverse training data and fine-tuning the model.
The concept of “make-to-order” (MTO) type companies is to produce the products just-in-time and improve the customer satisfaction. These types of company produce a high variety with low volume requiring a frequent setup operation. The shorter setup time will reduce the manufacturing lead time and hence increase the productivity. Unfortunately, most of the MTO type companies suffer with high setup time. Thus, single minute exchange die (SMED) concept is developed which consist of four stages: internal and external setup are not distinguished, separating internal and external setup, converting internal into external setup and streamlining all aspects of the setup operations. The main objective of using SMED concept is to accomplish setup time in less than 10 min. In this case study, the SMED concept being applied to convert internal setup to external setup which involves the activities of ink preparation and test printing. In the stage three of SMED concept, feasible solutions has been applied to fulfilled the objective. The result of implementing SMED concept in MTO type companies is the improvement in the productivity and reduction in the setup time. The improvement of productivity for this case study was 29.15%.
The impact of floods is the most severe among the natural calamities occurring in Malaysia. The knock of floods is consistent and annually forces thousands of Malaysians to relocate. The lack of information from the Ministry of Environment and Water, Malaysia is the foremost obstacle in upgrading the flood mapping. With the expeditious evolution of computer techniques, processing of satellite and unmanned aerial vehicle (UAV) images for river hydromorphological feature detection and flood management have gathered pace in the last two decades. Different image processing algorithms—structure from motion (SfM), multi-view stereo (MVS), gradient vector flow (GVF) snake algorithm, etc.—and artificial neural networks are implemented for the monitoring and classification of river features. This paper presents the application of the k-means algorithm along with image thresholding to quantify variation in river surface flow areas and vegetation growth along Kerian River, Malaysia. The river characteristic recognition directly or indirectly assists in studying river behavior and flood monitoring. Dice similarity coefficient and Jaccard index are numerated between thresholded images that are clustered using the k-means algorithm and manually segmented images. Based on quantitative evaluation, a dice similarity coefficient and Jaccard index of up to 97.86% and 94.36% were yielded for flow area and vegetation calculation. Thus, the present technique is functional in evaluating river characteristics with reduced errors. With minimum errors, the present technique can be utilized for quantifying agricultural areas and urban areas around the river basin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.