The emergence of massive datasets in a clinical setting presents both challenges and opportunities in data storage and analysis. This so called “big data” challenges traditional analytic tools and will increasingly require novel solutions adapted from other fields. Advances in information and communication technology present the most viable solutions to big data analysis in terms of efficiency and scalability. It is vital those big data solutions are multithreaded and that data access approaches be precisely tailored to large volumes of semi-structured/unstructured data.The MapReduce programming framework uses two tasks common in functional programming: Map and Reduce. MapReduce is a new parallel processing framework and Hadoop is its open-source implementation on a single computing node or on clusters. Compared with existing parallel processing paradigms (e.g. grid computing and graphical processing unit (GPU)), MapReduce and Hadoop have two advantages: 1) fault-tolerant storage resulting in reliable data processing by replicating the computing tasks, and cloning the data chunks on different computing nodes across the computing cluster; 2) high-throughput data processing via a batch processing framework and the Hadoop distributed file system (HDFS). Data are stored in the HDFS and made available to the slave nodes for computation.In this paper, we review the existing applications of the MapReduce programming framework and its implementation platform Hadoop in clinical big data and related medical health informatics fields. The usage of MapReduce and Hadoop on a distributed system represents a significant advance in clinical big data processing and utilization, and opens up new opportunities in the emerging era of big data analytics. The objective of this paper is to summarize the state-of-the-art efforts in clinical big data analytics and highlight what might be needed to enhance the outcomes of clinical big data analytics tools. This paper is concluded by summarizing the potential usage of the MapReduce programming framework and Hadoop platform to process huge volumes of clinical data in medical health informatics related fields.
This work develops a robust classifier for a COVID-19 pre-screening model from crowdsourced cough sound data. The crowdsourced cough recordings contain a variable number of coughs, with some input sound files more informative than the others. Accurate detection of COVID-19 from the sound datasets requires overcoming two main challenges (i) the variable number of coughs in each recording and (ii) the low number of COVID-positive cases compared to healthy coughs in the data. We use two open datasets of crowdsourced cough recordings and segment each cough recording into non-overlapping coughs. The segmentation enriches the original data without oversampling by splitting the original cough sound files into non-overlapping segments. Splitting the sound files enables us to increase the samples of the minority class (COVID-19) without changing the feature distribution of the COVID-19 samples resulted from applying oversampling techniques. Each cough sound segment is transformed into six image representations for further analyses. We conduct extensive experiments with shallow machine learning, Convolutional Neural Network (CNN), and pre-trained CNN models. The results of our models were compared to other recently published papers that apply machine learning to cough sound data for COVID-19 detection. Our method demonstrated a high performance using an ensemble model on the testing dataset with area under receiver operating characteristics curve = 0.77, precision = 0.80, recall = 0.71, F1 measure = 0.75, and Kappa = 0.53. The results show an improvement in the prediction accuracy of our COVID-19 pre-screening model compared to the other models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.