The flexural strength of Slender steel tube sections is known to achieve significant improvements upon being filled with concrete material; however, this section is more likely to fail due to buckling under compression stresses. This study investigates the flexural behavior of a Slender steel tube beam that was produced by connecting two pieces of C-sections and was filled with recycled-aggregate concrete materials (CFST beam). The C-section’s lips behaved as internal stiffeners for the CFST beam’s cross-section. A static flexural test was conducted on five large scale specimens, including one specimen that was tested without concrete material (hollow specimen). The ABAQUS software was also employed for the simulation and non-linear analysis of an additional 20 CFST models in order to further investigate the effects of varied parameters that were not tested experimentally. The numerical model was able to adequately verify the flexural behavior and failure mode of the corresponding tested specimen, with an overestimation of the flexural strength capacity of about 3.1%. Generally, the study confirmed the validity of using the tubular C-sections in the CFST beam concept, and their lips (internal stiffeners) led to significant improvements in the flexural strength, stiffness, and energy absorption index. Moreover, a new analytical method was developed to specifically predict the bending (flexural) strength capacity of the internally stiffened CFST beams with steel stiffeners, which was well-aligned with the results derived from the current investigation and with those obtained by others.
Reinforcement of structures aims to control the input energy of unnatural and natural forces. In the past four decades, steel shear walls are utilized in huge constructions in some seismic countries such as Japan, United States, and Canada to lessen the risk of destructive forces. The steel shear walls are divided into two types: unstiffened and stiffened. In the former, a series of plates (sinusoidal and trapezoidal corrugated) with light thickness are used that have the postbuckling field property under overall buckling. In the latter, steel profile belt series are employed as stiffeners with different arrangement: horizontal, vertical, or diagonal in one side or both sides of wall. In the unstiffened walls, increasing the thickness causes an increase in the wall capacity under large forces in tall structures. In the stiffened walls, joining the stiffeners to the wall is costly and time consuming. The ANSYS software was used to analyze the different models of unstiffened one-story steel walls with sinusoidal and trapezoidal corrugated plates under lateral load. The obtained results demonstrated that, in the walls with the same dimensions, the trapezoidal corrugated plates showed higher ductility and ultimate bearing compared to the sinusoidal corrugated plates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.