Polyetheretherketone (PEEK) has become increasingly popular in biomedical applications due to its favorable biocompatibility, biostability, mechanical strength, and elastic modulus, all of which are similar to those of natural bones. This paper investigates the effects of annealing on the behavior of PEEK ternary composites. PEEK samples were annealed and characterized by mechanical tests, Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR), Scanning Electron Microscopy (SEM), Energy Dispersive x-ray Spectroscopy (EDS) and physical property testing. Results showed that annealing has an appositive effect on the properties of PEEK. The properties of the ternary composites were also compared with those of pure PEEK and Ti as a control.
Polyetheretherketone (PEEK) materials belong to a group of high-performance thermoplastic polymers thermoplastic that has been proposed as a substitute for metals in biomaterials. In this research, in order to improve the performances of PEEK, nano titanium dioxide (n-TiO2) and nano-hydroxyapatite (n-HAp) were incorporated into PEEK loading up to (1.5 wt%) to fabricate PEEK composites by using a method of melt-blending and hot compressing. Properties, such as compression, density, the morphology of fracture, and element analysis were examined for preparing samples. The results showed that the compression and density properties improved with increased weight fraction for two types of reinforcement, but the higher values obtained at (1.5 wt%) for two types of powders. It was found the higher compression strength and compression modulus obtained when reinforced with (1.5% n-HAp) which equal to (107.632 MPa and 3.991 GPa) respectively, than for samples reinforced with (1.5% n-TiO2) which equal to (91.579 MPa and 3.123GPa) respectively, while the density results have opposite behavior, it was found the higher values obtained when reinforced with (n-TiO2) than for samples reinforced with (n-HAp) and at (1.5% n-TiO2) the higher density, which equal to (1.3656) while at (1.5% n-HAp) which equal to (1.3425). Field emission scanning electron microscope (FESEM) manifested, that the fracture morphology transferred from brittle to ductile when reinforced with nano particles. Also, EDS analysis elucidated an identically uniform distribution of n-TiO2 and n-HAp.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.