This study proposes novel Long Short-Term Memory (LSTM)-based classifiers through developing the internal structure of LSTM neural networks using 26 state activation functions as alternatives to the traditional hyperbolic tangent (tanh) activation function. The LSTM networks have high performance in solving the vanishing gradient problem that is observed in recurrent neural networks. Performance investigations were carried out utilizing three distinct deep learning optimization algorithms to evaluate the efficiency of the proposed state activation functions-based LSTM classifiers for two different classification tasks. The simulation results demonstrate that the proposed classifiers that use the Modified Elliott, Softsign, Sech, Gaussian, Bitanh1, Bitanh2 and Wave as state activation functions trump the tanh-based LSTM classifiers in terms of classification accuracy. The proposed classifiers are encouraged to be utilized and tested for other classification tasks.INDEX TERMS LSTM, deep neural network, activation Function, tanh gate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.