One of the most prevalent diseases affecting sugar beet crops globally is damping-off disease, which is caused by fungi or soil-borne bacteria. The objective of the current study was to assess the antimicrobial activity of various concentrations of CuO-NPs against Fusarium oxysporum, Macrophomina phaseolina, and Pectobacterium carotovorum in a lab setting and how they influenced vegetative growth, physiological traits, antioxidant enzymes, disease incidence percentage, and mineral nutrients of sugar beet plants in a greenhouse experiment. Sugar beet (Beta vulgaris cv. Oscar poly) seeds were soaked in different concentrations (50, 100, and 150 µg L−1) of the tested NPs for two hours pre-sowing. According to in vitro studies, as compared to aqueous copper sulphate and control, CuO-NPs at 25, 35, and 100 µg mL−1 had the greatest inhibitory effect (100%) on the mycelial growth of M. phaseolina, F. oxysporum, and P. carotovorum, respectively. Results from the greenhouse experiment showed that the 150 µg mL−1 concentration produced the greatest reduction in disease incidence %, with efficacy values of 24.53, 13.25, and 23.59% for F. oxysporum, M. phaseolina, and P. carotovorum, respectively. In addition, as compared to untreated control plants, the same concentration of CuO-NPs significantly (p ≤ 0.05) increased the vegetative development, physiological characteristics, antioxidant enzymes, and mineral nutrients of sugar beet plants. Therefore, the antimicrobial activity demonstrated by the biosynthesized CuO NPs indicates that they can resist plant pathogenic microorganisms of sugar beet plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.