Microarray data examination is a relatively new technology that intends to determine the proper treatment for various diseases and a precise medical diagnosis by analyzing a massive number of genes in various experimental conditions. The conventional data classification techniques suffer from overfitting and the high dimensionality of gene expression data. Therefore, the feature (gene) selection approach plays a vital role in handling a high dimensionality of data. Data science concepts can be widely employed in several data classification problems, and they identify different class labels. In this aspect, we developed a novel red fox optimizer with deep-learning-enabled microarray gene expression classification (RFODL-MGEC) model. The presented RFODL-MGEC model aims to improve classification performance by selecting appropriate features. The RFODL-MGEC model uses a novel red fox optimizer (RFO)-based feature selection approach for deriving an optimal subset of features. Moreover, the RFODL-MGEC model involves a bidirectional cascaded deep neural network (BCDNN) for data classification. The parameters involved in the BCDNN technique were tuned using the chaos game optimization (CGO) algorithm. Comprehensive experiments on benchmark datasets indicated that the RFODL-MGEC model accomplished superior results for subtype classifications. Therefore, the RFODL-MGEC model was found to be effective for the identification of various classes for high-dimensional and small-scale microarray data.
Because of recent technological and interface advancements in the field, the virtual reality (VR) movement has entered a new era. Mobility is one of the most crucial behaviours in virtual reality. In this research, popular virtual reality mobility systems are compared, and it is shown that gesture control is a key technology for allowing distinctive virtual world communication paradigms. Gesture based movements are very beneficial when there are a lot of spatial restrictions. With a focus on cost-effectiveness, the current study introduces a gesture-based virtual movement (GVM) system that eradicates the obligation for expensive hardware/controllers for virtual world mobility (i.e., walk/ jump/ hold for this research) using artificial intelligence (AI). Additionally, the GVM aims to prevent users from becoming dizzy by allowing them to change the trajectory by simply turning their head in the intended direction. The GVM was assessed on its interpreted realism, presence, and spatial drift in the actual environment in comparison to the state-of-the-art techniques. The results demonstrated how the GVM outperformed the prevailing methodologies in a number of common interaction components. Additionally, the empirical analysis showed that GVM offers customers a real-time experience with a latency of ~65 milliseconds.
Cloud data centers consume high volume of energy for processing and switching the servers among different modes. Virtual Machine (VM) migration enhances the performance of cloud servers in terms of energy efficiency, internal failures and availability. On the other end, energy utilization can be minimized by decreasing the number of active, underutilized sources which conversely reduces the dependability of the system. In VM migration process, the VMs are migrated from underutilized physical resources to other resources to minimize energy utilization and optimize the operations. In this view, the current study develops an Improved Metaheuristic Based Failure Prediction with Virtual Machine Migration Optimization (IMFP-VMMO) model in cloud environment. The major intention of the proposed IMFP-VMMO model is to reduce energy utilization with maximum performance in terms of failure prediction. To accomplish this, IMFP-VMMO model employs Gradient Boosting Decision Tree (GBDT) classification model at initial stage for effectual prediction of VM failures. At the same time, VMs are optimally migrated using Quasi-Oppositional Artificial Fish Swarm Algorithm (QO-AFSA) which in turn reduces the energy consumption. The performance of the proposed IMFP-VMMO technique was validated and the results established the enhanced performance of the proposed model. The comparative study outcomes confirmed the better performance of the proposed IMFP-VMMO model over recent approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.