SUMMARYSteam distillation of essential oils of aerial parts of Thymus capitatus and Marrubium vulgare L. collected at North cost of Egypt yielded 0.5% and 0.2%, respectively. Results of Gas chromatography-mass spectrometry analyses of the two samples identified 96.27% and 90.19% of the total oil composition for T. capitatus and M. vulgare, respectively. The two oil samples appeared dominated by the oxygenated constituents (88.22% for T. capitatus and 57.50% for M. vulgare), composed of phenols, mainly carvacrol (32.98%) and thymol (32.82%) in essential oil of T. capitatus, and thymol (34.55%) in essential oil of M. vulgare. It was evaluated the molluscicidal activity of T. capitatus and M. vulgare essential oils on adult and eggs of Biomphalaria alexandrina as well as their mosquitocidal activity on Culex pipiens. The LC 50 and LC 90 of T. capitatus essential oil against adult snails was 200 and 400 ppm/3hrs, respectively, while for M. vulgare it was 50 and 100 ppm/3hrs, respectively. Moreover, M. vulgare showed LC 100 ovicidal activity at 200 ppm/24 hrs while T. capitatus oil showed no ovicidal activity. It was verified mosquitocidal activity, with LC 50 and LC 90 of 100 and 200 ppm/12hrs respectively for larvae, and 200 and 400 ppm/12hrs respectively for pupae of C. pipiens.
Acanthamoebae are the most common opportunistic amphizoic protozoa that cause life-threatening granulomatous amoebic encephalitis in immunocompromised individuals and sight-threatening amoebic keratitis (AK) in contact lens wearers. The present work aimed to determine the presence of Acanthamoeba isolates in different environmental sources: water, soil, and dust in Cairo, Egypt and to characterize the pathogenic potential of the isolated Acanthamoeba using physiological and biochemical assays as well as determination of the genotypes in an attempt to correlate pathogenicity with certain genotypes. The study included the collection of 22 corneal scrapings from patients complaining of symptoms and signs indicative of acanthamoeba keratitis (AK) and 75 environmental samples followed by cultivation on non-nutrient agar plates preseeded with E. coli. Positive samples for Acanthamoeba were subjected to osmo- and thermo-tolerance assays and zymography analysis. Potentially pathogenic isolates were subjected to PCR amplification using genus-specific primer pair. Isolates were classified at the genotype level based on the sequence analysis of Acanthamoeba 18S rRNA gene (diagnostic fragment 3). The total detection rate for Acanthamoeba in environmental samples was 33.3 %, 31.4 % in water, 40 % in soil, and 20 % in dust samples. Three and two Acanthamoeba isolates from water and soil sources, respectively, had the potential for pathogenicity as they exhibited full range of pathogenic traits. Other 12 isolates were designated as weak potential pathogens. Only ten of the environmental isolates were positive in PCR and were classified by genotype analysis into T4 genotype (70 %), T3 (10 %) and T5 (20 %). Potential pathogens belonged to genotypes T4 (from water) and T5 (from soil) while weak potential pathogens belonged to genotypes T3 (from water) and T4 (from water and soil). Additionally, T7 genotype was isolated from keratitis patients. There is a considerable variation in the response of Acanthamoeba members of the same genotype to pathogenicity indicator assays making correlation of pathogenicity with certain genotypes difficult. Presence of potentially pathogenic Acanthamoeba isolates in habitats related directly to human populations represent a risk for human health. Isolation of Acanthamoeba genotype T7 from AK cases, which is commonly considered as nonpathogenic, might draw the attention to other Acanthamoeba genotypes considered as non pathogenic and reevaluate their role in production of human infections. To our knowledge, this is the first study on the presence and distribution of Acanthamoeba genotypes in the environment, Cairo, Egypt.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.