Recent trials in patients with neurodegenerative diseases documented the safety of gene therapy based on adeno-associated virus (AAV) vectors deposited into the brain. Inborn errors of the metabolism are the most frequent causes of neurodegeneration in pre-adulthood. In Sanfilippo syndrome, a lysosomal storage disease in which heparan sulfate oligosaccharides accumulate, the onset of clinical manifestation is before 5 years. Studies in the mouse model showed that gene therapy providing the missing enzyme α-N-acetyl-glucosaminidase to brain cells prevents neurodegeneration and improves behavior. We now document safety and efficacy in affected dogs. Animals received eight deposits of a serotype 5 AAV vector, including vector prepared in insect Sf9 cells. As shown previously in dogs with the closely related Hurler syndrome, immunosuppression was necessary to prevent neuroinflammation and elimination of transduced cells. In immunosuppressed dogs, vector was efficiently delivered throughout the brain, induced α-N-acetyl-glucosaminidase production, cleared stored compounds and storage lesions. The suitability of the procedure for clinical application was further assessed in Hurler dogs, providing information on reproducibility, tolerance, appropriate vector type and dosage, and optimal age for treatment in a total number of 25 treated dogs. Results strongly support projects of human trials aimed at assessing this treatment in Sanfilippo syndrome.
BACKGROUND: Cell therapies offer a promising potential in promoting bone regeneration. Stem cell therapy presents attractive care modality in treating degenerative conditions or tissue injuries. The rationale behind this is both the expansion potential of stem cells into a large cell population size and its differentiation abilities into a wide variety of tissue types, when given the proper stimuli. A progenitor stem cell is a promising source of cell therapy in regenerative medicine and bone tissue engineering. AIM: This study aimed to compare the osteogenic differentiation and regenerative potentials of human mesenchymal stem cells derived from human bone marrow (hBM-MSCs) or amniotic fluid (hAF-MSCs), both in vitro and in vivo studies. SUBJECTS AND METHODS: Human MSCs, used in this study, were successfully isolated from two human sources; the bone marrow (BM) and amniotic fluid (AF) collected at the gestational ages of second or third trimesters. RESULTS: The stem cells derived from amniotic fluid seemed to be the most promising type of progenitor cells for clinical applications. In a pre-clinical experiment, attempting to explore the therapeutic application of MSCs in bone regeneration, Rat lumbar spines defects were surgically created and treated with undifferentiated and osteogenically differentiated MSCs, derived from BM and second trimester AF. Cells were loaded on gel-foam scaffolds, inserted and fixed in the area of the surgical defect. X-Ray radiography follows up, and histopathological analysis was done three-four months post- operation. The transplantation of AF-MSCs or BM-MSCs into induced bony defects showed promising results. The AF-MSCs are offering a better healing effect increasing the likelihood of achieving successful spinal fusion. Some bone changes were observed in rats transplanted with osteoblasts differentiated cells but not in rats transplanted with undifferentiated MSCs. Longer observational periods are required to evaluate a true bone formation. The findings of this study suggested that the different sources; hBM-MSCs or hAF-MSCs exhibited remarkably different signature regarding the cell morphology, proliferation capacity and osteogenic differentiation potential CONCLUSIONS: AF-MSCs have a better performance in vivo bone healing than that of BM-MSCs. Hence, AF derived MSCs is highly recommended as an alternative source to BM-MSCs in bone regeneration and spine fusion surgeries. Moreover, the usage of gel-foam as a scaffold proved as an efficient cell carrier that showed bio-compatibility with cells, bio-degradability and osteoinductivity in vivo.
Background Adipose-derived stem cells (ASCs) are considered ideal candidates for both research and cellular therapy due to ease of access, large yield, feasibility, and efficacy in preclinical and clinical studies. Unlike the subcutaneous abdominal fat depot, breast ASCs features are still not well recognized, limiting their possible therapeutic use. ASCs were found to exert immunomodulatory and antioxidative activities for maintaining homeostasis and functionality of diseased/damaged tissues. This study aims to investigate the immunomodulatory and antioxidative potentials of breast versus abdominal isolated ASCs to find out which anatomical site provides ASCs with better immunoregulatory and oxidative stress resistance capabilities. Methods ASCs were isolated from abdominal and breast tissues. Gene expression analysis was conducted for a panel of immunomodulatory and antioxidative genes, as well as adipokines and proliferation genes. Flow cytometric analysis of a group of immunomodulatory surface proteins was also performed. Finally, the significantly expressed genes have undergone protein-protein interaction and functional enrichment in silico analyses. Results Our results revealed similar morphological and phenotypic characteristics for both breast and abdominal ASCs. However, a significant elevation in the expression of two potent immunosuppressive genes, IL-10 and IDO as well as the expression of the multifaceted immunomodulatory adipokine, visfatin, was detected in breast versus abdominal ASCs. Moreover, a significant overexpression of the antioxidative genes, GPX1, SIRT5, and STAT3 and the proliferation marker, Ki67, was also observed in breast ASCs relative to abdominal ones. In silico analysis showed that both of the differentially upregulated immunomodulatory and antioxidative mediators integratively involved in multiple biological processes and pathways indicating their functional association. Conclusion Breast ASCs possess superior immunomodulatory and antioxidative capabilities over abdominal ASCs. Our findings shed light on the possible therapeutic applications of breast ASCs in immune-related and oxidative stress-associated diseases.
BACKGROUND: Human amniotic fluid-derived stem cells (hAF-MSCs) have a high proliferative capacity and osteogenic differentiation potential in vitro. The combination of hAF-MSCs with three-dimensional (3D) scaffold has a promising therapeutic potential in bone tissue engineering and regenerative medicine. Selection of an appropriate scaffold material has a crucial role in a cell supporting and osteoinductivity to induce new bone formation in vivo. AIM: This study aimed to investigate and evaluate the osteogenic potential of the 2nd-trimester hAF-MSCs in combination with the 3D scaffold, 30% Nano-hydroxyapatite chitosan, as a therapeutic application for bone healing in the induced tibia defect in the rabbit. SUBJECT AND METHODS: hAF-MSCs proliferation and culture expansion was done in vitro, and osteogenic differentiation characterisation was performed by Alizarin Red staining after 14 & 28 days. Expression of the surface markers of hAF-MSCs was assessed using Flow Cytometer with the following fluorescein-labelled antibodies: CD34-PE, CD73-APC, CD90-FITC, and HLA-DR-FITC. Ten rabbits were used as an animal model with an induced defect in the tibia to evaluate the therapeutic potential of osteogenic differentiation of hAF-MSCs seeded on 3D scaffold, 30% Nano-hydroxyapatite chitosan. The osteogenic differentiated hAF-MSCs/scaffold composite system applied and fitted in the defect region and non-seeded scaffold was used as control. The histopathological investigation was performed at 2, 3, & 4 weak post-transplantation and scanning electron microscope (SEM) was assessed at 2 & 4 weeks post-transplantation to evaluate the bone healing potential in the rabbit tibia defect. RESULTS: Culture and expansion of 2nd-trimester hAF-MSCs presented high proliferative and osteogenic potential in vitro. Histopathological examination for the transplanted hAF-MSCs seeded on the 3D scaffold, 30% Nano-hydroxyapatite chitosan, demonstrated new bone formation in the defect site at 2 & 3 weeks post-transplantation as compared to the control (non-seeded scaffold). Interestingly, the scaffold accelerated the osteogenic differentiation of AF-MSCs and showed complete bone healing of the defect site as compared to the control (non-seeded scaffold) at 4 weeks post-transplantation. Furthermore, the SEM analysis confirmed these findings. CONCLUSION: The combination of the 2nd-trimester hAF-MSCs and 3D scaffold, 30% Nano-hydroxyapatite chitosan, have a therapeutic perspective for large bone defect and could be used effectively in bone tissue engineering and regenerative medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.